На правах рукописи

АБАБКОВА Анна Александровна

НАУЧНОЕ ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ ГИДРОЛИЗАТА СЫВОРОТОЧНЫХ БЕЛКОВ В ТЕХНОЛОГИИ КИСЛОМОЛОЧНЫХ ПРОДУКТОВ

05.18.04 — Технология мясных, молочных и рыбных продуктов и холодильных производств

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Вологда-Молочное – 2021

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Вологодская государственная молочнохозяйственная академия им. Н. В. Верещагина»

Научный руководитель: доктор технических наук, доцент **Новокшанова Алла Львовна**

Официальные оппоненты:

Станиславская Екатерина Борисовна, доктор технических наук, доцент, Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный университет инженерных технологий», кафедра технологии продуктов животного происхождения, профессор

Ионова Инна Исааковна, кандидат технический наук, доцент, Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет пищевых производств», кафедра технологии молока, пробиотических молочных продуктов и сыроделия, доцент

Ведущая организация

Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет»

Защита состоится «23» июня 2021 г. в 11.00 часов на заседании диссертационного совета Д 307.007.01 на базе Федерального государственного бюджетного образовательного учреждения высшего образования «Калининградский государственный технический университет» по адресу: 236022, г. Калининград, Советский проспект, 1, зал заседаний совета (ауд. 255/256).

С диссертацией можно ознакомиться в библиотеке и на сайте $\Phi \Gamma FOY BO$ «Калининградский государственный технический университет».

https://klgtu.ru/science/diss/soviets/dissertatsii/

E-mail: <u>olga.anohina@klgtu.ru</u> Факс: (84012) 99-53-46

Автореферат разослан «___» _____ 2021 г.

Ученый секретарь диссертационного совета, кандидат технический наук

Aleuf

Анохина Ольга Николаевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Продвижение принципов здорового питания, производство функциональных, специализированных продуктов питания с использованием функциональных пищевых ингредиентов — важнейшая задача пищевой промышленности Российской Федерации.

При этом все большую важность приобретает необходимость использования новых отечественных ингредиентов, в том числе и в производстве кисломолочной продукции с функциональными свойствами. Несомненно, к таким ингредиентам следует отнести гипоаллергенный гидролизат сывороточных белков молока с глубокой степенью гидролиза (далее — гидролизат), поскольку белки молочной сыворотки, обладающие высокой биологической ценностью, становятся гораздо более доступными после ферментативного гидролиза пептидных связей. Гидролизат представляет собой смесь аминокислот, пептидов, витаминов, минеральных элементов и лактозы. Свободные аминокислоты легко всасываются через кишечную стенку и активно используются организмом на свои нужды, что имеет существенное значение при различных нарушениях пищеварения, которые могут вызываться как заболеваниями желудочно-кишечного тракта, так и возрастными особенностями организма человека. В связи с этим использование гидролизата в производстве продуктов питания дает возможность получать продукты с повышенной биологической ценностью.

Также в режимах питания незаменимыми считаются кисломолочные продукты, в том числе пробиотические, которые содержат необходимые для организма питательные вещества в легкоусвояемой форме, нормализуют микрофлору кишечника, препятствуют дисбактериозу, улучшают пищеварение, способствуют укреплению иммунитета.

Разработка нового пробиотического продукта с гидролизатом сывороточных белков соответствует Стратегии повышения качества пищевой продукции в Российской Федерации до 2030 года, является своевременной и актуальной.

Степень разработанности темы. Создание молочных продуктов с повышенным содержанием белка для специализированного питания связано с работами научных школ Покровского А.А. и Тутельяна В.А. Теоретические и практические основы по созданию молочных продуктов функционального назначения заложены в трудах Ганиной В.И, Зобковой З.С., Остроумова Л.А., Свириденко Г.М., Тихомировой Н.А., Хамагаевой И.С., Храмцова А.Г., Шевелевой С.А. и других ученых. Использование гидролизатов сывороточных белков в производстве пищевых продуктов отражено в разработках Абрамова Д.В., Агарковой Е.Ю., Рожковой И.В., Свириденко Ю.Я., Харитонова В.Д. и других авторов.

Цель и задачи исследования. Цель настоящего исследования – научное обоснование и практическое применение гидролизата высокой степени гидролиза в технологии производства кисломолочных продуктов.

Для достижения поставленной цели сформулированы следующие задачи:

- обосновать актуальность использования и установить допустимую долю внесения гидролизата в молочное сырье, а также определить рациональный состав молочной основы для производства кисломолочных продуктов с гидролизатом;
- исследовать влияние гидролизата на процесс скващивания молочного сырья заквасочными микроорганизмами при производстве продукта, установить рациональные варианты сочетаний микроорганизмов, обеспечивающие пробиотические свойства продукта;
- подтвердить увеличение содержания незаменимых аминокислот в кисломолочных продуктах за счет внесения гидролизата;
- установить массовую долю пищевого волокна для улучшения потребительских свойств и увеличения срока годности продукта;
- разработать технологию, рецептуры и нормативную документацию для постановки на производство кисломолочных продуктов с гидролизатом и провести промышленные выработки.

Научная новизна работы. Органолептическими и физико-химическими методами установлен допустимый интервал внесения от 1 до 3 % гидролизата в молочный продукт.

Определено экспериментальным путем и подтверждено методом корреляционнорегрессионного анализа оптимальное соотношение обезжиренного молока к пахте 1:1 в производстве кисломолочных продуктов с гидролизатом. Исследованы технологические особенности процессов культивирования отдельных микроорганизмов в обезжиренном молоке и пахте при добавлении гидролизата. Доказано, что пробиотические свойства продукта с гидролизатом обеспечиваются комбинированием в составе закваски двух частей S. salivarius subsp. thermophilus, одной части Bifidobacterium и одной вариабельной части из штаммов Lb. plantarum, Lb. Acidophilus или Lb. delbrueckii subsp. bulgaricus. Подтверждено повышенное содержание незаменимых аминокислот (Валин, Изолейцин, Лейцин, Лизин, Треонин и Триптофан) в продукте благодаря внесению гидролизата. Выявлено положительное влияние пищевого волокна на консистенцию продукта с гидролизатом. Определены технологические параметры производства кисломолочного продукта с процессе специфика формирования гидролизатом, исследована хранения органолептических, физико-механических микробиологических И показателей кисломолочного продукта с гидролизатом, показатели безопасности и срок годности нового продукта. Новизна технических решений подтверждена патентами.

Теоретическая и практическая значимость работы. Результаты исследований влияния гидролизата на широкий спектр показателей молочного сырья и процессов сквашивания могут служить теоретической основой для его дальнейшего использования на пищевые цели, в том числе в производстве кисломолочных продуктов. Практическая значимость работы заключается в разработке и утверждении в установленном порядке нормативных документов для производства продуктов ТУ, ТИ к ТУ 9222-001-00493250-15 «Кисломолочный продукт, обогащенный гидролизатом сывороточных белков» и ТУ, ТИ к ТУ 10.51.52-006-00493250-2019 «Кисломолочный продукт с гидролизатом сывороточных белков и пищевым волокном». Проведены промышленные выработки продуктов в соответствие с нормативной документацией на АО «Учебно-опытный молочный завод» ВГМХА им. Н. В. Верещагина (г. Вологда, с. Молочное).

Методы исследований. Физико-химические и микробиологические исследования проводили в соответствии с государственными стандартами. Органолептическую оценку образцов кисломолочного продукта проводили с использованием балльной оценки с последующим определением показателей значимости по методу ранга. Реологические показатели кисломолочных продуктов определяли на ротационном вискозиметре «Реотест 2.1». Срок годности устанавливали в соответствии с МУК 4.2.1847-04 Санитарноэпидемиологическая оценка обоснования сроков годности и условий хранения пищевых продуктов. Аминокислотный состав молочного сырья и гидролизата анализировали методом высокоэффективной жидкостной хроматографии с использованием катионообменного анализатора (Кnauer, ФРГ) и последующей постколоночной дериватизацией нингидрином.

Основные положения, выносимые на защиту:

- использование гидролизата в технологии кисломолочных продуктов как перспективное направление молочной промышленности;
- результаты комплексных исследований органолептических, физико-химических, микробиологических, структурно-механических показателей образцов в процессе определения состава продукта и подбора комбинации микроорганизмов закваски;
- технологические особенности производства продуктов с гидролизатом и результаты исследования биологической ценности.

Степень достоверности подтверждается воспроизводимостью экспериментальных данных, полученных с использованием современных физико-химических, микробиологических, реологических методов исследований, и их математической обработкой, апробацией производства нового продукта в производственных условиях.

Апробация работы. Основные положения диссертации доложены и одобрены на научнопрактических конференциях, в том числе: на научно-практической конференции «Вологодские молочные продукты – основа здорового питания» (г. Вологда, 2014 г.), международной научнопрактической конференции «Научные перспективы XXI века» (г. Нефтекамск, 2015 г.), научно-практической конференции с международным участием «Спортивное питание и спортивная медицина» (г. Москва, 2015 г.), Всероссийской научно-практической конференции «Молодые исследователи — развитию молочнохозяйственной отрасли» в рамках проведения молочного форума (г. Вологда, 2017 г.). Результаты исследований получили признание на областном конкурсе научно-технических проектов Вологодской области «Потенциал будущего» (г. Вологда, 2017 г.) и Всероссийском конкурсе на лучшую научную работу среди студентов, аспирантов и молодых ученых высших учебных заведений Министерства сельского хозяйства Российской Федерации (г. Великие Луки, 2018 г.).

Публикации. По материалам диссертации опубликована 21 научная работа, в том числе 4 работы, входящие в базу данных Scopus, 4 статьи в журналах, рекомендованных ВАК для публикации основных материалов диссертации, патенты РФ (RU 2612317, RU 2617939).

Структура и объем работы. Диссертация состоит из введения, 4 глав, заключения, списка литературы и приложений. Объем основного текста работы составляет 155 страниц, включает 35 рисунков, 41 таблицу и 4 приложения. Список литературы содержит 129 источников.

СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Во введении обоснована актуальность темы диссертации, определены цели и задачи исследований, научная новизна и практическая значимость работы.

В первой главе «Литературный обзор» рассмотрены аспекты появления новых кисломолочных продуктов на основе побочных продуктов переработки молока с различной функциональной направленностью за счет добавления функциональных ингредиентов.

Во второй главе «Организация эксперимента и методы исследований» определены объекты, предметы, методы исследований и представлена общая схема работы (Рисунок 1).

І этап Аналитический обзор научно-технической и патентной литературы

- •Обзор научно-технической отечественной и зарубежной литературы по исследуемой теме
- •Патентный поиск рецептур и способов производства функциональных молочных продуктов с гидролизатами сывороточных белков и пищевыми волокнами

II этап Изучение возможности использования гидролизата высокой степени гидролиза в производстве кисломолочных продуктов

- •Обоснование выбора молочного сырья и рационального количества гидролизата в технологии функциональных кисломолочных продуктов органолептическими и физико-химическими методами
- •Установление методом дисперсионного анализа взаимосвязи между массовой долей гидролизата, составом молочной основы и свойствами продукта

III этап Подбор количества ингредиентов и состава закваски для производства кисломолочного продукта с гидролизатом

- •Подбор комбинаций заквасочных культур методами органолептического, физико-химического и микробиологического анализа
- •Обработка полученных экспериментальных данных
- •Установление технологиических режимов производства и обоснование срока годности продукта
- Установление массовой доли пищевого волокна для улучшения потребительских свойств и увеличения срока годности продукта

IV этап Практическая реализация результатов исследований

- •Разработка комплекта нормативной документации и заявки на патент
- •Технико-экономический расчет и проверка разработанной технологии в производственных условиях
- •Проведение микробиологических и гигиенических испытаний образцов продуктов на показатели качества
- Подтверждение увеличения содержания незаменимых аминокислот в кисломолочных продуктах за счет внесения гидролизата

Рисунок 1 – Схема проведения и практической реализации исследований

Объектом исследований на протяжении всех этапов являлась рецептура и технология кисломолочного продукта с гидролизатом. Предметами исследований служили: обезжиренное молоко по ГОСТ 31658-2012; пахта по ГОСТ 34354-2017; гидролизат сывороточных белков по ТУ 10.51.56-218-19862939-2017; заквасочные культуры отечественного и зарубежного производства; пищевое волокно «Цитри-Фай» по нормативной документации производителя; опытные образцы с внесением гидролизата и пищевого волокна, контрольные – без гидролизата и пищевого волокна, а также их свойства.

При организации и проведении исследований применялись общепринятые, стандартные и оригинальные методы, в том числе физико-химические, микробиологические и структурно-механические, а также математические методы статистической обработки данных и построения математических моделей.

В третьей главе «Подбор количества ингредиентов и состава закваски для производства кисломолочного продукта» на первом этапе исследовано влияние гидролизата в диапазоне от 1 до 10 % на органолептические и физико-химические показатели сырья и продукта, сквашиванием закваской S. salivarius subsp. thermophilus при температуре (40 ± 1) °C в течение 6 часов. По итогам органолептической оценки несквашенных и сквашенных образцов ухудшение вкуса, запаха, цвета и консистенции проб наблюдали с массовой доли гидролизата 4 %. Образцы, содержащие от 5 до 10 % гидролизата, имели выраженный альбуминный запах и вкус, что делало их неудовлетворительными. Максимальное количество баллов получили образцы смеси молочного сырья при количестве гидролизата не более 3 %.

Методом вискозиметрии выяснено, что внесение гидролизата от 1 до 3 % практически пропорционально увеличивало условную вязкость обезжиренного молока, пахты и их смеси по сравнению с контрольными образцами (рисунок 2). Но при массовой доле гидролизата 5 % и выше наблюдали уменьшение условной вязкости и практически полное отсутствие сгустка, несмотря на увеличении общего количества сухих веществ в образцах.

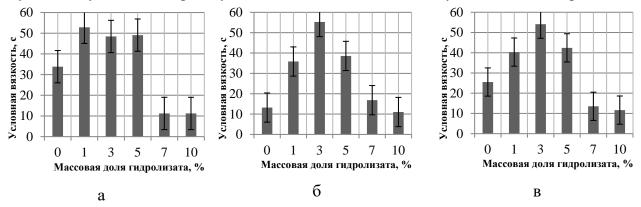


Рисунок 2 – Изменение условной вязкости в зависимости от содержания гидролизата: а – обезжиренное молоко; б – пахта; в – смесь пахты и обезжиренного молока в соотношении 1:1

Методом корреляционно-регрессионного анализа получены математические модели, адекватно отражающие зависимости изменения общего балла органолептических показателей (y_1) , условной вязкости (y_2) , синерезиса (y_3) , титруемой кислотности (y_4) от массовой доли гидролизата (x_1) и массовой доли пахты в смеси (x_2) :

 $y_1 = 14.58 - 3.62x_1 - 0.07x_2$; $y_2 = 26.27 - 4.29x_1 - 3.48x_2$; $y_3 = 12.11 - 4.78x_1 - 5.67x_2$; $y_4 = 148 + 36.7x_1 - 2.67x_2$.

На базе данных исследований определен состав молочной основы для производства кисломолочного продукта с соотношением пахты и обезжиренного молока 1:1 и количеством гидролизата от 1 до 3 %.

При исследовании несквашенных образцов обезжиренного молока и пахты установлено, что физико-химические показатели молочного сырья, использованного для

культивирования микроорганизмов с гидролизатом и без него, имели существенные различия.

Титруемая кислотность обезжиренного молока и пахты с добавлением 1 % гидролизата увеличивалась на $(15,0\pm1,0)$ °T, но активная кислотность при этом практически не изменялась (таблица 1), что свидетельствует о положительном влиянии гидролизата на буферную емкость систем.

Таблица 1 – Изменение физико-химических показателей молочного сырья в зависимости от

массовой доли гидролизата

Молочное	Массовая доля	Кислотность		Буферная емкость,	Осмоляльность,
сырье	гидролизата, %	титруемая, °Т	активная, рН	см ³ NaOH*	ммоль/кг H_2O
	0	16,0±1,0	$6,68\pm0,04$	1,00±0,04	312,4±2,4
Обезжиренное	1	31,0±1,0	$6,67\pm0,04$	1,39±0,04	367,6±5,5
молоко	2	46,0±1,0	$6,61\pm0,04$	$1,64\pm0,04$	$421,5\pm6,0$
	3	61,0±1,0	6,58±0,04	1,81±0,04	475,1±5,8
	0	15,0±1,0	6,69±0,03	1,00±0,04	277,5±3,7
Пахта	1	30,0±1,0	$6,67\pm0,04$	1,38±0,02	$332,2\pm 5,4$
Пахта	2	45,0±1,0	$6,65\pm0,04$	1,63±0,04	$386,2\pm5,7$
	3	60,0±1,0	$6,62\pm0,04$	1,88±0,04	440,8±5,6
* – молярная концентрация эквивалента 0,1 моль/дм ³					

Также положительное влияние гидролизата проявилось в увеличении осмотической концентрации молочного сырья, что повышает насыщение бактериальных ферментов доступными субстратами.

На втором этапе проанализированы технологически значимые показатели процесса сквашивания молочного сырья без идентификации морфологических признаков микроорганизмов и подсчета численности клеток. Сквашивание проводили одноштаммовыми и моновидовыми многоштаммовыми заквасочными микроорганизмами. Гидролизат в опытные образцы вносили в количестве 1, 2 и 3 %. В таблице 2 представлены параметры культивирования микроорганизмов в соответствии с характеристикой, указанной в документации производителя.

Таблица 2 – Параметры сквашивания молочного сырья изучаемыми микроорганизмами

Вид заквасочной культуры	Температура заквашивания, °С	Продолжительность, ч
S. salivarius subsp. thermophilus	40±2	6,0±0,1
Lc. lactis subsp.	30±2	12,0±0,1
Lb. Acidophilus	40±2	6,0±0,1
Lb. delbrueckii subsp. bulgaricus	42±2	6,0±0,1
Lb. plantarum	38±2	6,0±0,1
Bifidobacterium	37±1	6,0±0,1
Bifidobacterium *	37±1	16,0±0,1
Кефирная закваска	20±2	18,0±0,1

По результатам органолептической оценки максимальное количество баллов получили образцы пахты и обезжиренного молока, сквашенные *S. salivarius subsp. thermophilus*. Эти образцы имели чистый, приятный, кисломолочный вкус и запах, однородный плотный сгусток. Именно поэтому термофильные микроорганизмы необходимо включать в состав закваски для сквашивания молочного сырья с добавлением гидролизата.

При использовании других культур образцы не имели достаточно густой консистенции сгустка. Пробы сырья, сквашенные *Bifidobacterium*, *Lb. plantarum*, *Lb. Acidophilus*, кефирной закваской не отличались интенсивным гелеобразованием при внесении гидролизата в количестве 3 %. При использовании закваски *Bifidobacterium* при продолжительности сквашивания 16 часов образовывался слабый сгусток уже при массовой доле гидролизата 2 %. Такую же консистенцию имели образцы, полученные при сквашивании закваской *Lb. Acidophilus*. За 6 ч сквашивания при использовании закваски *Bifidobacterium* сгустки в изучаемом молочном сырье не были сформированы. Неплотный

сгусток образовывался при сквашивании молочного сырья кефирной закваской и *Lb.* plantarum даже при массовой доле гидролизата 1 %. Также слабое гелеобразование давали *Lc. lactis subsp.* во всех опытных образцах. Удовлетворительные потребительские характеристики имели опытные образцы при применении *Lb. delbrueckii subsp. bulgaricus*.

В результате сквашивания показатель титруемой кислотности всех опытных образцов имел более высокое значение, а увеличение буферной емкости, способствовало усвоению источников питания из гидролизата микроорганизмами.

На основании результатов данного этапа исследований показана возможность использования гидролизата в производстве кисломолочных продуктов. Использование гидролизата в количестве 3 % в составе изученного молочного сырья способствовало развитию ряда заквасочных микроорганизмов таких как *S. salivarius subsp. thermophilus*, *Lc. lactis subsp* и *Lb. delbrueckii subsp. bulgaricus* и ускоряло процесс сквашивания в среднем на четыре часа, что в конечном итоге позволит сократить затраты на производство. Установлено, что для получения функционального кисломолочного продукта с гидролизатом, в составе закваски следует сочетать пробиотические культуры с *S. salivarius subsp. thermophilus*.

В продолжение поиска заквасочной микрофлоры молочное сырье сквашивали комбинациями из двух видов микроорганизмов. Для этого использовали соотношение 1:1 следующих сочетаний микроорганизмов: S. S salivarius subsp. S thermophilus + S salivarius subsp. S thermophilus + S salivarius subsp. S sal

Самый высокий показатель титруемой кислотности имели сгустки, полученные при сквашивании молочной основы закваской, состоящей из S. $salivarius\ subsp.\ thermophilus\ +\ Lb$. Acidophilus, самый низкий при использовании S. $salivarius\ subsp.\ thermophilus\ +\ Bifidobacterium\ (Рисунок\ 3)$. Это подтверждает наличие сильных кислотообразующих свойств S. $salivarius\ subsp.\ thermophilus\ u\ Lb$. Acidophilus, что не характерно для Bifidobacterium.

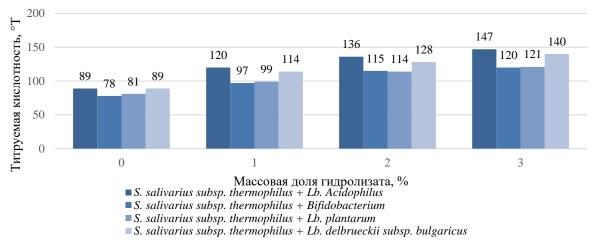


Рисунок 3 – Средние показатели титруемой кислотности сгустков, полученных сквашиванием заквасками, состоящими из двух компонентов

Вкус, запах и цвет опытных проб со всеми видами закваски был практически одинаковым, изменения происходили только с увеличением массовой доли гидролизата. Наиболее значимым показателем была консистенция. Сгустки, полученные сквашиванием *S. salivarius subsp. thermophilus + Bifidobacterium*, были менее плотными по сравнению с остальными образцами, поэтому наименьшее количество баллов получили образцы, сквашенные комбинацией *S. salivarius subsp. thermophilus + Bifidobacterium*.

Также установлено, что гидролизат оказывает влияние на стабильность структуры продукта. При добавлении гидролизата в продукт потеря вязкости в сгустках с использованием заквасок S. salivarius subsp. thermophilus + Lb. Acidophilus и S. salivarius subsp. thermophilus + Lb. plantarum снизилась в среднем на 20 %. Наименьший уровень

потери вязкости образцов имели сгустки, полученные при использовании закваски S. $salivarius\ subsp.\ thermophilus + Lb.\ plantarum$ при максимальной массовой доле гидролизата 3%, и составили 37.5%.

По мере внесения гидролизата способность к восстановлению структуры значительно возрастала. Максимальное восстановление структуры было характерно для всех видов продукта с наибольшим количеством гидролизата. Самым низким показателем восстановления структуры (69,6 %) отличался сгусток контрольного образца, полученный при сквашивании закваской, состоящей из *S. salivarius subsp. thermophilus + Bifidobacterium*.

Самый высокий показатель восстановления структуры имел сгусток, сквашенный комбинацией микроорганизмов *S. salivarius subsp. thermophilus* + *Lb. Acidophilus* (рисунок 4). Например, восстановление структуры в образце, содержащем 3 % гидролизата и заквашенном смесью *S. salivarius subsp. thermophilus* + *Lb. Acidophilus*, достигало 100 %.

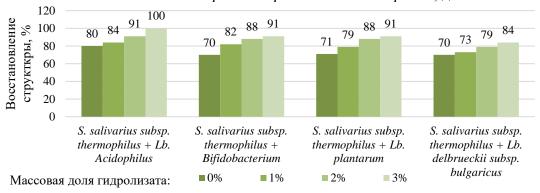


Рисунок 4 — Изменение показателя восстановления структуры сгустков от количества внесенного гидролизата и вида закваски

По подсчетам численности жизнеспособных клеток, представленным в таблице 3, доказано, что при внесении гидролизата в продукт от 1 до 3 % количество молочнокислых микроорганизмов во всех образцах значительно превышало требования законодательства и составляло более $10^7~{\rm KOE/cm^3}$. Однако, заметно, что количество пробиотической составляющей закваски во всех контрольных образцах несколько выше, чем в опытных пробах продукта.

Таблица 3 – Численность микроорганизмов при использовании заквасок, состоящих из двух

видов на конец срока хранения

Количество	S. salivarius subsp. thermophilus + Lb. Acidophilus, KOE/cm³		S. salivarius subsp. thermophilus + Bifidobacterium, KOE/cm³	
гидролизата, %	S. salivarius subsp. thermophilus	Lb. Acidophilus	S. salivarius subsp. thermophilus	Bifidobacterium
0	$(1,0-1,1)\cdot 10^9$	$(8,0-8,2)\cdot 10^8$	$(1,0-1,1)\cdot 10^9$	$(3,5-3,6)\cdot 10^8$
1	$(1,2-1,3)\cdot 10^9$	$(3,4-3,5)\cdot 10^8$	$(1,0-1,1)\cdot 10^9$	$(1,0-1,1)\cdot 10^7$
2	$(1,0-1,1)\cdot 10^9$	$(7,5-7,6)\cdot 10^8$	$(1,0-1,1)\cdot 10^9$	$(1,0-1,1)\cdot 10^7$
3	$(7,8-8,0)\cdot 10^8$	$(7,4-7,5)\cdot 10^8$	$(1,0-1,1)\cdot 10^9$	$(1,8-2,0)\cdot 10^7$
	S. salivarius subsp. thermophilus + Lb.		S. salivarius subsp. thermophilus +	
	plantarum, КОЕ/см³		Lb. delbrueckii subsp. bulgaricus, KOE/см³	
	S. salivarius subsp.	Lb. plantarum	S. salivarius subsp.	Lb. delbrueckii
	thermophilus	Lo. pianiarum	thermophilus	subsp. bulgaricus
0	$(1,1-1,2)\cdot 10^9$	$(7,8-8,0)\cdot 10^6$	$(1,1-1,2)\cdot 10^9$	$(6,0-6,2)\cdot 10^8$
1	$(1,0-1,1)\cdot 10^9$	$(4,0-4,2)\cdot 10^6$	$(1,0-1,1)\cdot 10^9$	$(8,0-8,2)\cdot 10^7$
2	$(1,0-1,1)\cdot 10^9$	$(4,6-4,7)\cdot 10^6$	$(1,0-1,1)\cdot 10^9$	$(8,0-8,1)\cdot 10^7$
3	$(1,0-1,1)\cdot 10^9$	$(7,6-8,0)\cdot 10^6$	$(1,0-1,1)\cdot 10^9$	$(6,8-7,0)\cdot 10^7$

Полученные данные послужили основанием для продолжения работ по выбору комбинаций заквасочных микроорганизмов, приемлемых для получения пробиотического продукта с гидролизатом сывороточных белков.

В данной серии опытов для сквашивания молочной основы использовали закваску из трех видов микроорганизмов (таблица 4).

Таблица 4 – Варианты заквасок из трех компонентов

Варианты	Состав
I	S. salivarius subsp. thermophilus, Bifidobacterium, Lb. Acidophilus (1:1:1)
II	S. salivarius subsp. thermophilus, Bifidobacterium, Lb. delbrueckii subsp. bulgaricus (1:1:1)
III	S. salivarius subsp. thermophilus, Bifidobacterium, Lb. plantarum (1:1:1)
IV	S. salivarius subsp. thermophilus, Bifidobacterium, Lb. Acidophilus (2:1:1)
V	S. salivarius subsp. thermophilus, Bifidobacterium, Lb. delbrueckii subsp. bulgaricus (2:1:1)
VI	S. salivarius subsp. thermophilus, Bifidobacterium, Lb. plantarum (2:1:1)

В результате органолептической оценки, максимальное количество баллов получили образцы при сочетании микроорганизмов 2:1:1. Титруемая кислотность этих образцов возрастала с увеличением внесения гидролизата, но не превышала технологической нормы. На этом основании данное сочетание микроорганизмов принято для разработки технологии.

При изучении роста молочнокислых бактерий и их способности адаптироваться к внесению гидролизата (рисунки 5, 6, 7) выявлены следующие особенности.

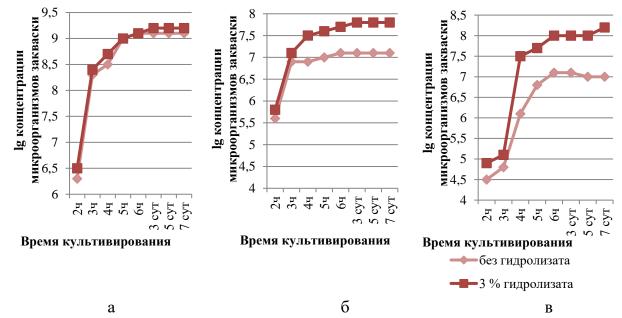


Рисунок 5 — Динамика роста микроорганизмов закваски при соотношении S. salivarius subsp. thermophilus (a), Lb. Acidophilus (б), Bifidobacterium (в) 2:1:1

При адаптации микроорганизмов происходил слабый прирост численности, затем резкое увеличение их количества, свидетельствующее об активном развитии микроорганизмов, и далее торможение размножения — до конца срока хранения. Резкий скачок в развитии *S. salivarius subsp. thermophilus, Lb. Acidophilus, Lb. delbrueckii subsp. bulgaricus* происходил через 2 ч после заквашивания, *Lb. plantarum* — через три часа, *Bifidobacterium* — через четыре часа. С внесением 3 % гидролизата количество всех видов микроорганизмов существенно возрастало, что позволяет предположить, что микрофлора закваски использует дополнительные питательные вещества гидролизата для своего развития.

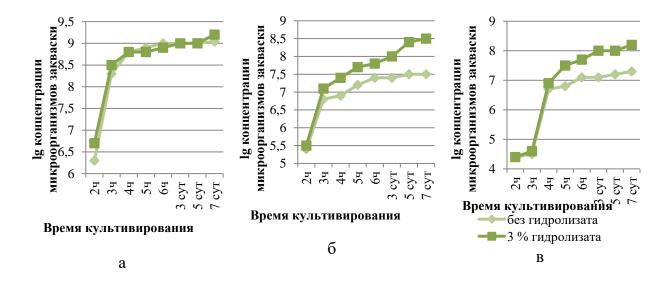


Рисунок 6 — Динамика роста микроорганизмов закваски при соотношении S. salivarius subsp. thermophilus (a), Lb. delbrueckii subsp. bulgaricus (б), Bifidobacterium (в) 2:1:1

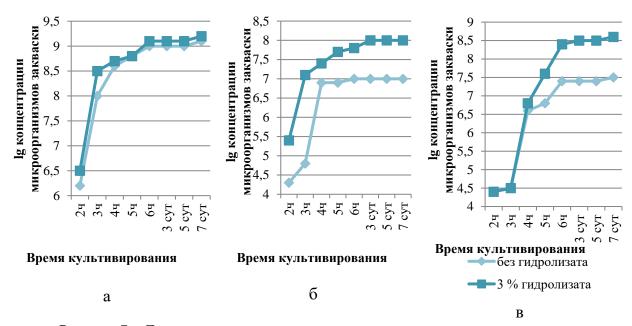


Рисунок 7 — Динамика роста микроорганизмов закваски при соотношении $S.\ salivarius\ subsp.\ thermophilus\ (a),\ Lb.\ plantarum\ (б),\ Bifidobacterium\ (в)\ 2:1:1$

Восстанавливаемость стустка после механического разрушения контрольных и опытных образцов продукта с хранения лучше, чем в свежесквашенных. Значение показателя восстановления структуры 100 % имели сгустки всех опытных вариантов заквасок при максимальном количестве гидролизата. Наименьшим значением потери вязкости 33,3 % отличались образцы, полученные при сквашивании закваской, состоящей из *S. salivarius subsp. thermophilus, Bifidobacterium, Lb. delbrueckii subsp. bulgaricus (2:1:1)* при максимальной дозе гидролизата 3 %.

Таким образом установлено, что для получения кисломолочного пробиотического продукта с гидролизатом, отличающегося высокими потребительскими характеристиками, целесообразно в составе заквасочной микрофлоры использовать две объемные части *S. salivarius subsp. thermophilus*, одну часть — *Bifidobacterium* и одну переменную часть из штаммов *Lb. Plantarum* или *Lb. Acidophilus* или *Lb. delbrueckii subsp. bulgaricus*.

В результате исследований аминокислотного состава образцов методом высокоэффективной жидкостной хроматографии установлено, что гидролизат значительно улучшил аминокислотный профиль продукта. Как видно из таблицы 5, при внесении 3 % гидролизата содержание Валина, Изолейцина, Лейцина, Лизина, Треонина и Триптофана в порции продукта массой 200 г достигало 15 % уровня адекватного суточного потребления.

Таблица 5 – Аминокислотный состав контрольных и опытных вариантов смесей пахты и

обезжиренного молока (1:1) в расчете на порцию продукта массой 200 г

Незаменимые	Содержание ам		Содержание аминокислоты относительно		
аминокислоты	смеси, м	смеси, мг/200 г		адекватного уровня, %	
	без гидролизата	с 3 % гидролизата	без гидролизата	с 3 % гидролизата	
Валин	198	370	8	15	
Изолейцин	168	350	8	18	
Лейцин	370	692	8	15	
Лизин	316	604	8	15	
Метионин+ Цистеин	102	188	6	10	
Треонин	186	434	8	18	
Триптофан	337	468	42	59	
Фенилаланин+Тирозин	354	558	8	13	

В соответствии с требованиями нормативной документации продукт относится к обезжиренным, а также низкокалорийным, так как содержит менее 40 ккал (Таблица 6). Таблица 6 — Пищевая и энергетическая ценность готового кисломолочного продукта с

массовой долей гидролизата 3 %

Показатель	Количество
Массовая доля жира, %	0,2
Массовая доля белка, %, не менее	4,95
Массовая доля углеводов, %	4,5
Калорийность/энергетическая ценность, ккал/кДж	40,0/170,0

По итогам оценки сбалансированности аминокислотного состава продукта получили коэффициент отклонения аминокислотного состава от эталонных значений (КОАС) 0,02 и показатель индекса незаменимых аминокислот (ИНАК) равный 1,0. В «идеальном» белке эти показатели составляют, соответственно, 0,00 и 1,0 соответственно. Суммарное содержание незаменимых аминокислот в белках с высокой биологической ценностью должно быть не менее 40,0 г/100 г белка, а в новом продукте этот показатель равен 36,6 г/100 г белка. Отношение содержания незаменимых аминокислот (НАК) к общему азоту белка (ОАБ) равное 2,35, приближалось к значению 2,50, который имеют белки с высокой биологической ценностью.

Установление срока годности продукта проводили в образцах с массовой долей гидролизата 3 % сразу после сквашивания, на пятые, седьмые и девятые сутки хранения при температуре (4 \pm 2) °C в герметичной упаковке. Титруемая кислотность продукта в процессе хранения повышалась на 5-7 °T, вкус и запах продукта оставались без изменений. На девятые сутки наблюдалось излишнее отделение сыворотки. Таким образом, анализом экспериментальных данных установлен допустимый срок хранения разработанного продукта в герметичной упаковке при температуре (4 \pm 2) °C – 7 суток.

С целью удовлетворения запросов покупателей и торговых сетей по увеличению продолжительности хранения продукта, проведены экспериментальные испытания по удлинению срока годности путем внесения пищевого волокна. Из множества видов волокон выбрано натуральное цитрусовое волокно «Цитри-Фай 100/Сitri-Fi® 100». Испытания продукта с волокном проводились на 7, 10 и 13 сутки хранения.

Исследования показали, что присутствие пищевого волокна уменьшало интенсивность синерезиса во всех образцах с гидролизатом примерно на 20-25 %, значительно улучшая влагоудерживающие свойства молочных сгустков. Все опытные образцы имели меньшие значения объема выделившейся сыворотки по сравнению с контрольными как на 7, так и на 10 и 13 сутки.

Изучение динамики развития заквасочной микрофлоры в присутствии гидролизата и пищевого волокна в процессе хранения показало, что содержание жизнеспособных клеток

пробиотических микроорганизмов на конец срока годности соответствовало требованиям пробиотических продуктов. Результаты исследований продукта с массовой долей гидролизата 3 %, заквашенного комбинацией микроорганизмов *S. salivarius subsp. thermophilus*, *Lb. Acidophilus*, *Bifidobacterium* (2:1:1) на конец предполагаемого срока годности представлены в таблице 7.

Таблица 7 – Показатели кисломолочных продуктов без пищевого волокна и с массовой долей

пищевого волокна 0,1 % в процессе хранения

Наименование показателя	Значение на конец срока годности		
	без пищевого волокна	с пищевым волокном	
Титруемая кислотность, °T	137,0±1,0	144,3±1,1	
Количество жизнеспособных клеток бифидобактерий, КОЕ/см ³	$(6,8-7,5)\cdot 10^7$	$(6,5-7,1)\cdot 10^7$	
Количество жизнеспособных клеток ацидофильной палочки, KOE/cм ³	$(3,6-3,8)\cdot 10^7$	$(3,3-3,4)\cdot 10^7$	
Количество жизнеспособных клеток молочнокислых стрептококков, KOE/cм ³	$(8,5-8,7)\cdot 10^8$	$(7,5-7,7)\cdot 10^8$	
Количество БГКП (колиформы), отсутствуют в см 3	0,1	0,1	

По данным аккредитованной испытательной лаборатории содержание *Staphylococcus aureus*, патогенных микроорганизмов, в том числе сальмонелл и плесневых грибов на протяжении всего срока хранения продуктов соответствовали требованиям, установленным ТР ТС 033/2013 «О безопасности молока и молочной продукции».

Таким образом, анализ экспериментальных данных позволил установить допустимый срок хранения разработанного продукта в герметичной упаковке при температуре $(4\pm2)^{\circ}$ С 7 суток без пищевого волокна и 10 суток – с волокном «Цитри-Фай 100/Citri-Fi® 100».

В четвертой главе «Практическая реализация результатов исследований» представлены рецептуры и технология производства продуктов. С учетом исследования структурно-механических свойств образцов изготовление кисломолочных продуктов с гидролизатом целесообразно проводить резервуарным способом по схеме, представленной на рисунке 8. Продукты рекомендовано фасовать в пластиковые бутылочки по 200 мл.

Рисунок 8 — Технологическая схема производства кисломолочных продуктов с гидролизатом

Примеры рецептур приведены в таблице 8.

Таблица 8 – Примеры рецептур кисломолочного продукта с гидролизатом

Наименование сырья		Норма для рецептур, кг		
		2	3	
Смесь (молоко обезжиренное с массовой долей жира 0,05 %,				
массовой долей белка не менее 3,0 % и пахта с массовой долей				
жира 0,4 %, массовой долей белка не менее 3,0 %)	990	980	970	
Гидролизат	10	20	30	
Масса нормализованной смеси	1000	1000	1000	

При производстве продукта с пищевым волокном в каждую рецептуру включается 1 кг волокна на 1000 кг смеси.

Показатели предполагаемой экономической эффективности производства кисломолочных продуктов представлен в таблице 9.

Таблица 9 – Расчет прибыли и цен на продукты

Показатели	Кисломолочный продукт с м.д. гидролизата 3 %		
	без пищевого волокна	с пищевым волокном	
Полная себестоимость 1 т, тыс. руб.	62,42	62,50	
Рентабельность, %	10,00	10,00	
Прибыль на 1 т, тыс. руб.	6,24	6,25	
Оптовая цена 1 т, тыс. руб.	68,66	68,75	
НДС, тыс. руб.	6,87	6,88	
Отпускная цена 1 т, тыс. руб.	75,53	75,63	
Отпускная цена 1 упаковки, руб.	15,11	15,13	

Расчет экономических показателей, учитывающих стоимость сырья, вносимого гидролизата, производственных расходов и логистики, показал, что цена на новый продукт меньше, чем на традиционные кисломолочные продукты на основе цельного молока, что предопределяет его высокую конкурентоспособность на рынке функциональных пищевых продуктов.

ЗАКЛЮЧЕНИЕ

- В результате комплекса исследований, выполненных при изучении влияния гидролизата сформулированы следующие выводы:
- 1) Установлена допустимая доля внесения гидролизата в молочную смесь от 1 до 3 % и оптимальное соотношение обезжиренного молока к пахте 1:1, способствующие развитию ряда заквасочных микроорганизмов, ускорению процесса сквашивания, сокращению затрат на производство.
- 2) Экспериментально доказана необходимость комбинирования заквасочных культур и установлены рациональные варианты сочетаний из двух частей S. salivarius subsp. thermophilus, одной части Bifidobacterium и одной вариабельной части из штаммов Lb. plantarum, Lb. Acidophilus или Lb. delbrueckii subsp. bulgaricus для обеспечения пробиотических свойств продукта с гидролизатом.
- 3) Методом хроматографии подтверждено увеличение содержания в продукте большинства незаменимых аминокислот Валина, Треонина, Лейцина, Изолейцина, Триптофана и Лизина за счет внесения гидролизата.
- 4) Установлено, что массовая доля (0,1%) пищевого волокна стабилизирует кисломолочные сгустки с гидролизатом, улучшая потребительские свойства и увеличивая срок годности продукта.
- 5) Разработаны рецептуры и технология кисломолочных продуктов на основе пахты и обезжиренного молока с гидролизатом сывороточных белков и пищевым волокном.

Список работ, опубликованных по теме диссертации

Публикации в изданиях, входящих в базу данных Scopus:

1. Новокшанова А.Л., Абабкова А.А. Специализированные белковые кисломолочные напитки // Вопросы питания. -2015. - Том 84. - № 83. - С.52-53.

- 2. Полянская И.С., Абабкова А.А. Пробиотические кисломолочные напитки, обогащенные гидролизатом сывороточных белков // Вопросы питания. -2015. Том 84. № S3. С. 57.
- 3. Анализ аминокислотного состава обезжиренного молока и пахты для производства кисломолочного напитка при внесении гидролизата сывороточных белков / Новокшанова А.Л., Топникова Е.В., Абабкова А.А.// Вопросы питания. -2019. Том 88. № 3. С. 90-96.
- 4. Разработка и оценка возможности применения нового кислородного коктейля с повышенным содержанием белка в диетотерапии пациентов кардиологического профиля / Неповинных Н.В., Новокшанова А.Л., Могильный М.П., Лямина Н.П., Семина А.И., Абабкова А.А., Широков А.А., Гринев В.С., Птичкина Н.М. // Вопросы питания. 2018. Том 87. № 2. С. 94-102.

Публикации в изданиях, рекомендованных ВАК:

- 5. Абабкова, А.А. Исследование реологических характеристик кисломолочных сгустков обогащенных гидролизатом сывороточных белков / А.А. Абабкова, Е.Ю. Неронова, А.Л. Новокшанова // Молочнохозяйственный вестник. 2016. № 3. С. 37-45.
- 6. Новокшанова, А.Л. Результаты поиска оптимального консорциума микроорганизмов при производстве специального белкового кисломолочного продукта / А.Л. Новокшанова, А.А. Абабкова, Д.В. Абрамов // СПб: Вестник Международной академии холода. 2016. № 4. С. 23-29.
- 7. Новокшанова А.Л. Напиток с гидролизатом сывороточных белков молока / А.Л. Новокшанова, А.А. Абабкова, Д.В. Абрамов // Молочная промышленность. 2016. №12. С. 58-60.
- 8. Абабкова А.А. Экономическая целесообразность производства пробиотических напитков с гидролизатом сывороточных белков / А.А. Абабкова, А.Л. Новокшанова, Н.В. Фатеева // Молочная промышленность. 2020. №12. С. 22-23.

Статьи и материалы конференций

- 9. Новокшанова А.Л., Абабкова А.А., Иванова С.В. Определение дозы внесения гидролизата сывороточных белков в кисломолочный продукт методом органолептической оценки // Молочнохозяйственный вестник. 2015. № 1 (17). С. 79-86.
- 10. Грунская В.А., Иванова С.В., Абабкова А.А. Анализ микробиологических рисков при производстве кисломолочных продуктов // Молочнохозяйственный вестник. 2013. № 2 (10). C. 30-35.
- 11. Абабкова А.А., Носкова В.И., Новокшанова А.Л. Исследование влагоудерживающей способности молочнокислых сгустков в присутствии гидролизата сывороточных белков // Сборник: Научные перспективы XXI века, материалы Международной (заочной) научно-практической конференции / 2015. С. 15-18.
- 12. Новокшанова А.Л., Ожиганова Е.В., Абабкова А.А. О разработке отечественных спортивных и специализированных продуктов на молочной основе // Сборник: Продовольственный рынок: проблемы импортозамещения, материалы Международной научно-практической конференции / 2015. С. 374-376.
- 13. Новокшанова А.Л., Ожиганова Е.В., Абабкова А.А. Проектирование специализированных пищевых продуктов на молочной основе для спортсменов и других категорий граждан // Сборник: Бизнес. Наука. Образование: проблемы, перспективы, стратегии, материалы российской заочной научно-практической конференции с международным участием: в 2-х частях / 2015. С. 487-489.
- 14. Абабкова А.А., Барышева А.А., Новокшанова А.Л. Исследование активности пищеварительных ферментов in vitro в молочных смесях, обогащенных гидролизатом сывороточных белков // Молодежь и наука. -2015. N = 4. C. 1.
- 15. Новокшанова А.Л., Иванова С.В., Абабкова А.А. Исследование сквашивания пахты, обогащенной гидролизатом сывороточных белков / сборник: Инновационные тенденции развития российской науки, материалы IX Международной научно-

практической конференции молодых ученых // отв. за выпуск: В. Л. Бопп. – 2016. – С. 38-40.

- 16. Барышева А.А., Абабкова А.А. Исследование условной вязкости обезжиренного молока и пахты, сквашенных в присутствии гидролизата сывороточных белков / Сборник: Первая ступень в науке, Сборник трудов ВГМХА по результатам работы IV Ежегодной научно-практической студенческой конференции (технологический факультет) // 2016. С. 12-15.
- 17. Абабкова А.А. Синеретическая способность сгустков, содержащих гидролизат сывороточных белков / А.А. Абабкова, А.Л. Новокшанова, Н.В. Неповинных // Молодые исследователи агропромышленного и лесного комплексов регионам. Том 2. Технические науки. Сборник научных трудов по результатам работы ІІ международной молодежной научно-практической конференции. Вологда-Молочное: ФГБОУ Вологодская ГМХА, 2017. С. 144-147.
- 18. Абабкова А.А. Исследование влияния гидролизата сывороточных белков молока на рост и развитие пробиотической микрофлоры / А.А. Абабкова, А.Л. Новокшанова, Н.В. Неповинных // Молодые исследователи развитию молочнохозяйственной отрасли. Сборник научных трудов по результатам работы всероссийской научно-практической конференции. Вологда Молочное: ФГБОУ Вологодская ГМХА, 2017. С. 22-27.
- 19. Расширение спектра заквасочной микрофлоры в технологии кисломолочного продукта с гидролизатом сывороточных белков / Абабкова А.А., Новокшанова А.Л. // Молочнохозяйственный вестник. 2018. № 3 (31). С. 71-78.

ИЗОБРЕТЕНИЯ

- 20. Пат. 2617939 Российская федерация, МПК А23С 9/123, А23С 9/14, А23С 17/00. Способ получения пробиотического кисломолочного напитка, обогащенного гидролизатом сывороточных белков / Новокшанова А.Л., Полянская И.С.; Абабкова А.А.; заявитель и патентообладатель ФГБОУ ВО Вологодская ГМХА. № 2015126206; заявл. 30.06.2015; опубл. 28.04.2017, Бюл. № 13.
- 21. Пат. 2612317 Российская федерация, МПК A23L 2/00, A23L 2/38, A23L 2/52. Способ получения кислородного коктейля с пониженной аллергенностью и с повышенной массовой долей белка животного происхождения / Новокшанова А.Л., Неповинных Н.В., Абабкова А.А., Семина А.И., Птичкина Н.М.; заявитель и патентообладатель ФГБОУ ВО Вологодская ГМХА. № 2015145381; заявл. 21.10.2015; опубл. 06.03.2017, Бюл. № 7.

СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ И СОКРАЩЕНИЙ:

ГИДРОЛИЗАТ/ГИДРОЛИЗАТ СЫВОРОТОЧНЫХ БЕЛКОВ – гипоаллергенный гидролизат сывороточных белков молока с глубокой степенью гидролиза более 60%;

ТУ – технические условия;

ТИ – технологическая инструкция;

АО – акционерное общество;

МУК – методические указания;

ФРГ – Федеративная Республика Германия;

КОАС – коэффициент отклонения аминокислотного состава;

ИНАК – индекс незаменимых аминокислот;

НАК – незаменимые аминокислоты;

ОАБ – общий азот белка:

ПИЩЕВОЕ ВОЛОКНО/ВОЛОКНО – натуральное цитрусовое волокно «Цитри-Фай 100/Citri-Fi $^{\text{®}}$ 100»;

КОЕ – колонии образующие единицы;

БГКП – бактерии группы кишечной палочки;

TP TC – технический регламент Таможенного союза;

М.Д. – массовая доля.