

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Проректор по НР Н.А. Кострикова 30.06.2021

Рабочая программа дисциплины

ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ QD-6.2.2/РПД-30.(32.54)

вариативной части образовательной программы аспирантуры по направлению подготовки

19.06.01 ПРОМЫШЛЕННАЯ ЭКОЛОГИЯ И БИОТЕХНОЛОГИИ

Направленность (профиль) подготовки **05.18.12 – ПРОЦЕССЫ И АППАРАТЫ ПИЩЕВЫХ ПРОИЗВОДСТВ**

Факультет механико-технологический

РАЗРАБОТЧИК Кафедра пищевых и холодильных машин

ВЕРСИЯ V.2

ДАТА ВЫПУСКА 21.06.2021 ДАТА ПЕЧАТИ 21.06.2021

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54) Выпуск: 21.06.2021 Версия: V.2

Стр. 2/10

1 ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Оптимизация технологических процессов в машинах и аппаратах пищевых производств» является дисциплиной вариативной части образовательной программы аспирантуры, формирующей у обучающихся готовность к применению знаний, умений и навыков в профессиональной деятельности в области оптимизации производственных процессов пищевых производств в современных условиях.

Целью освоения дисциплины является формирование знаний, умений и навыков, необходимых в профессиональной деятельности аспиранта в области оптимизации технологических процессов, позволяющие проводить анализ, по результатам которого появляется возможность оценить текущий технологический процесс, а также исследовать потенциал для оптимизации настоящих и внедрения новых технологических процессов.

Задачи изучения дисциплины:

- изучение принципов и методов оптимизации технологических процессов пищевых производств;
- изучение на существующих методах оптимизации технологических процессов анализа процессов пищевых производств;
- приобретение навыков и приемов оптимизации технологических процессов пищевых производств;
 - освоение путей оптимизации современных процессов пищевых производств;
- ознакомление с принципами взаимосвязи научных исследований с оптимизацией новых технологических процессов.

2 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

2.1 Результатами освоения дисциплины «Оптимизация технологических процессов в машинах и аппаратах пищевых производств» должны быть следующие этапы формирования у обучающегося общепрофессиональных (ОПК) и профессиональных компетенций (ПК), предусмотренных ФГОС ВО и образовательной программой (ОП ВО), а именно:

По ПК-1: способность собирать и анализировать исходные данные, необходимые для расчета, моделирования и проведения эксперимента, выполнять необходимые для научных иссле-дований расчеты, обосновывать их и представлять результаты работы, владеть методами проведения патентных исследований, сбора и обработки библиографических данных, баз данных российских и международных организаций для решения поставленных конкретных задач исследования анализировать результаты и обосновывать получен-ные выводы, способность выбирать инструментальные средства, пакеты прикладных программ для обработки данных в соответствии с поставленной задачей, анализировать результаты расчетов и обосновывать полученные выводы:

ПК-1.2: способность собирать и анализировать исходные данные, необходимые для оптимизации объекта исследования и планирования эксперимента, выполнять необходимые для научных исследований расчеты, обосновывать их и представлять результаты работы.

По ПК-2: владеть методами планирования эксперимента, построения стандартных математических моделей для описания процессов и явлений, анализировать и содержательно интерпретировать полученные результаты, владеть методами моделирования и оптимизации объектов исследования, анализировать и содержательно интерпретировать полученные результаты:

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54) Выпуск: 21.06.2021 Версия: V.2 Стр. 3/10

ПК-2.1: владеть методами построения стандартных математических моделей для описания процессов в машинах и аппаратах пищевых про-изводств, анализировать и интерпретировать полученные результаты, владеть методами оптимизации объектов исследования, анализировать и интерпретировать полученные результаты.

2.2 В результате изучения дисциплины студент должен:

знать:

- сущность основных процессов пищевых производств;
- основные методы оптимизации и их применение для оценки технологических процессов пищевых производств;

уметь:

- использовать современные технические средства и информационные технологии для решения аналитических и исследовательских задач при оптимизации технологических процессов пищевых производств;

владеть:

- навыками оптимизации технологических процессов на базе основных закономерностей процессов пищевых производств.

3 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.В.ДВ1.2 «Оптимизация технологических процессов в машинах и аппаратах пищевых производств» относится к Блоку 1 вариативной части образовательной программы аспирантуры, по направлению подготовки 19.06.01 Промышленная экология и биотехнологии, направленность (профиль) подготовки 05.18.12 — «Процессы и аппараты пищевых производств».

Знания, умения и навыки, полученные при освоении дисциплины, используются при проведении научной деятельности Б3.1 «Научно-исследовательская деятельность и подготовка научно-квалификационной работы (диссертации) на соискание ученой степени кандидата наук» и в дальнейшей профессиональной деятельности.

4 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Тема 1. Введение. Основные характеристики случайных величин.

Цель и задачи дисциплины. Место дисциплины в структуре образовательной программы. Планируемые результаты освоения дисциплины. Случайные величины. Аксиомы теории вероятностей. Законы распределения. Числовые характеристики. Свойства математического ожидания и дисперсии. Равномерное распределение. Нормальное распределение. Системы случайных величин. Стохастическая связь.

Тема 2. Определение параметров функции распределения

Генеральная совокупность и случайная выборка. Метод максимального правдоподобия. Классификация ошибок измерения. Закон сложения ошибок. Доверительные инервалы. Проверка однородности результатов измерений.

Тема 3. Дисперсионный анализ

Задача дисперсионного анализа. Однофакторный дисперсионный анализ. Двухфакторный дисперсионный анализ. Планирование эксперимента.

Тема 4. Методы корреляционного и регрессионного анализов

Выборочный коэффициент корреляции. Коэффициенты частной корреляции. При-

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54) Выпуск: 21.06.2021 Версия: V.2 Стр. 4/10

ближенная регрессия. Метод наименьших квадратов. Линейная регрессия. Параболическая регрессия. Полиномы Чебышева.

5 ОБЪЕМ (ТРУДОЕМКОСТЬ ОСВОЕНИЯ) И СТРУКТУРА ДИСЦИПЛИНЫ, ФОРМЫ АТТЕСТАЦИИ ПО НЕЙ

Общая трудоемкость дисциплины составляет 3 зачетных единиц (3ET), т.е. 108 академических (81 астр. час) часов контактной работы (лекционных и практических занятий) и самостоятельной учебной работы аспиранта, связанной с текущей и промежуточной (заключительной) аттестацией по дисциплине.

Распределение трудоемкости освоения дисциплины по семестрам ОП, темам и видам учебной работы аспиранта приведено ниже.

Формы аттестации по дисциплине:

очная форма, третий семестр – зачет.

Таблица 1 - Объем (трудоёмкость освоения) в очной форме обучения и структура дисциплины

Полож и политования политования	Объем учебной работы, ч				
Номер и наименование темы, вид учебной	Контактная работа			СР	Всего
работы	Лекции	ЛЗ	П3	CP	Deero
Семестр - 3 , трудоемкость — 3 ЗЕТ (108 час.)					
Тема 1. Введение. Основные характеристики случайных величин.	4	_	-	16	20
Тема 2. Определение параметров функции распределения	4	-	6	20	30
Тема 3. Дисперсионный анализ	4	-	6	20	30
Teмa 4. Методы корреляционного и регрессионного анализов	6	-	6	16	28
Учебные занятия	18	-	18	72	108
Промежуточная аттестация			зачет		
Итого по дисциплине			•		108

ПЗ - практические занятия, СР – самостоятельная работа.

6 ЛАБОРАТОРНЫЕ ЗАНЯТИЯ (РАБОТЫ)

Не предусматриваются.

7 ПРАКТИЧЕСКИЕ ЗАНЯТИЯ

Таблица 2 - Объем (трудоемкость освоения) и структура ПЗ

Номер ПЗ	Содержание практических занятий		
1	Равномерное распределение. Нормальное распределение. Системы случайных величин. Стохастическая связь.	4	
2	Метод максимального правдоподобия. Классификация ошибок измерения. Закон сложения ошибок. Доверительные интервалы.	4	
3	Однофакторный дисперсионный анализ. Двухфакторный дисперсионный анализ.	4	
4	Приближенная регрессия. Метод наименьших квадратов. Линейная	6	

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54) Выпуск: 21.06.2021 Версия: V.2 Стр. 5/10

Номер ПЗ	Содержание практических занятий	
	регрессия. Параболическая регрессия. Полиномы Чебышева.	
	ИТОГО:	18

8 САМОСТОЯТЕЛЬНАЯ РАБОТА АСПИРАНТОВ

Таблица 3 - Объем (трудоёмкость освоения) и формы СР

№	Вид (содержание) СРС	Вид (содержание) СРС очная форма	
1 Освоение теоретического учебного материала (в т.ч. подготовка к практическим занятиям) 72		Текущий контроль: - контроль на ПЗ	
	Всего	72	

9 УЧЕБНАЯ ЛИТЕРАТУРА И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА

Основная литература:

- 1. Глазунов, Ю.Т. Моделирование процессов пищевых производств : учеб. пособие / Ю. Т. Глазунов, А. М. Ершов, М. А. Ершов. Москва : Колос, 2008. 356 с.
- 2. 1. Ахназарова С.Л. Методы оптимизации эксперимента в химической технологии / С.Л. Ахназарова, В.В. Кафаров 2-е изд., перераб. И доп. М.: Высшая школа, 1985. 327с.

Дополнительная литература:

- 1. Кавецкий, Г.Д. Технологические процессы и производства (пищевая промышленность): учеб. / Г. Д. Кавецкий, А. В. Воробьева. Москва: КолосС, 2006. 367 с.
- 2. Спиридонов, А.А. Планирование эксперимента при исследовании и оптимизации технологических процессов : учеб. пособие / А. А. Спиридонов ; авт. Васильев, Н. Г. Свердловск : УПИ, 1975. 140 с.
- 3. Грачев, Ю. П. Моделирование и оптимизация тепло-и массообменных процессов пищевых производств / Ю. П. Грачев. Москва : Легкая и пищевая промышленность, 1984. 215с.

10 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И ИНТЕРНЕТ-РЕСУРСЫ ДИСЦИПЛИНЫ

Информационные технологии

В ходе освоения дисциплины обучающиеся используют возможности интерактивной коммуникации со всеми участниками и заинтересованными сторонами образовательного процесса, ресурсы и информационные технологии посредством электронной информационной образовательной среды университета.

Перечень современных профессиональных баз данных и информационных справочных систем, к которым обучающимся по образовательной программе обеспечивается доступ (удаленный доступ) является ежегодно обновляемым приложением к рабочим программам дисциплин (рассматривается УМС и утверждается отдельно) и размещается на официальном сайте в разделе «Образовательные программы высшего образования университета» и в ЭИОС.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54)

Выпуск: 21.06.2021

Версия: V.2

Стр. 6/10

Перечень лицензионного программного обеспечения ежегодно обновляется и размещен на сайте университета (http://www.klgtu.ru/about/structure/structure_kgtu/itc/info/software.php).

Программное обеспечение

Программа MathCAD 2015-License Лицензия 3A1843569 от 26.04.2013- бессрочная;

Программное обеспечение Microsoft, получаемое по программе Microsoft "Open Value Subscription" license v0948021, дата окончания 2021.01.31;

Офисные приложения Microsoft "Open Value Subscription" license v0948021, дата окончания 2021.01.31.

Интернет-ресурсы

1. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/

11 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для аудиторных занятий по дисциплине используется материально-техническая база кафедры пищевых и холодильных машин (г. Калининград, Советский проспект, 1, ГУК) г. Калининград, Советский проспект, 1, ГУК, ауд. 362 - компьютерный класс - учебная аудитория для проведения занятий лекционного типа, практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации. Учебная аудитория укомплектована специализированной (учебной) мебелью - учебной доской, столом преподавателя, партами, стульями. 13 компьютеров с подключением к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду организации; комплект лицензионного программного обеспечения. Типовое ПО на всех ПК: 1. Операционная система Windows 7 (получаемая по программе Microsoft "Open Value Subscription" license V0948021 дата окончания 31.01.2021); 2. Офисное приложение MS Office Standard 2010 (получаемое по программе Microsoft "Open Value Subscription" license V0948021 дата окончания 31.01.2021); 3. Kaspersky Endpoint Security (17E0-190201-091470-333-1032 до 2020-02-12); 4. Google Chrome (GNU); 5. Программный комплекс AutoDesk для учебных заведений Education Master Suite: AutoCAD, AutoCADCivil 3D и т.д. (Договор #110001955026, Договор #110001703865, Договор #110001781500); 6. MathCAD 2015 (Лицензия 3A1843569 от 26.04.2013); 7. Pithon (Python Software Foundation License); 8. КОМПАС-3D V11. Проектирование и конструирование в машиностроении (Акт передачи прав от 05.09.2013 № С3-13-00287); 9. ВЕРТИКАЛЬ V 4 (Акт передачи прав от 05.09.2013 № С3-13-00287)

Для самостоятельной работы аспирантов используется помещение для самостоятельной работы по адресу г. Калининград, Советский проспект, 1, ГУК, ауд. 464. Помещение оснащено Специализированной (учебной) мебелью - партами, стульями. Имеется 14 компьютеров с подключением к сети Интернет и обеспечением доступа в электронную информационнообразовательную среду организации, комплект лицензионного программного обеспечения. Типовое ПО на всех ПК: 1. Операционная система Windows 7 (получаемая по программе Microsoft "Open Value Subscription" license V0948021 дата окончания 31.01.2021); 2. Офисное приложение MS Office Standard 2010 (получаемое по программе Microsoft "Open Value Subscription" license V0948021 дата окончания 31.01.2021); 3. Kaspersky Endpoint Security (17E0-190201-091470-333-1032 до 2020-02-12); 4. Google Chrome (GNU); 5. Программный комплекс AutoDesk для учебных заведений Education Master Suite: AutoCAD, AutoCADCivil 3D и т.д. (Договор #110001955026, Договор #110001703865, Договор #110001781500); 6.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54) Выпуск: 21.06.2021 Версия: V.2 Стр. 7/10

МаthCAD 2015 (Лицензия 3A1843569 от 26.04.2013); 7. Pithon (Python Software Foundation License); 8. КОМПАС-3D V11. Проектирование и конструирование в машиностроении (Акт передачи прав от 05.09.2013 № C3-13-00287); 9. ВЕРТИКАЛЬ V 4 (Акт передачи прав от 05.09.2013 № C3-13-00287)

12 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ, СИСТЕМА ОЦЕНИВАНИЯ И КРИТЕРИИ ОЦЕНКИ

- 12.1. Типовые контрольные задания и иные материалы, необходимые для оценки результатов освоения дисциплины (в т.ч. в процессе ее освоения), а также методические материалы, определяющие процедуры этой оценки приводятся в приложении к рабочей программе дисциплины (утверждается отдельно).
- 12.2. Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 балльную (процентную) систему и правило перевода оценок в пятибалльную систему.

Таблица 4 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	//Vopoulow	«отлично»
	тельно»	тельно»	«хорошо»	«отлично»
Критерий	«не зачтено»		«зачтено»	
1. Системность и	Обладает частич-	Обладает ми-	Обладает	Обладает полнотой
полнота знаний в	ными и разрознен-	нимальным	набором знаний,	знаний и системным
отношении изучае-	ными знаниями,	набором зна-	достаточным для	взглядом на изучаемый
мых объектов	которые не может	ний, необходи-	системного	объект
	научно- корректно	мым для си-	взгляда на изуча-	
	связывать между	стемного взгля-	емый объект	
	собой (только не-	да на изучае-		
	которые из кото-	мый объект		
	рых может связы-			
	вать между собой)			
2. Работа с инфор-	Не в состоянии	Может найти	Может найти,	Может найти, система-
мацией	находить необхо-	необходимую	интерпретировать	тизировать необходи-
	димую информа-	информацию в	и систематизиро-	мую информацию, а
	цию, либо в состо-	рамках постав-	вать необходи-	также выявить новые,
	янии находить от-	ленной задачи	мую информацию	дополнительные источ-
	дельные фрагмен-		в рамках постав-	ники информации в
	ты информации в		ленной задачи	рамках поставленной
	рамках поставлен-			задачи
	ной задачи			
3. Научное осмыс-	Не может делать	В состоянии	В состоянии	В состоянии осуществ-
ление изучаемого	научно корректных	осуществлять	осуществлять	лять систематический и
явления, процесса,	выводов из имею-	научно кор-	систематический	научно-корректный
объекта	щихся у него све-	ректный анализ	и научно кор-	анализ предоставленной
	дений, в состоянии	предоставлен-	ректный анализ	информации, вовлекает
	проанализировать	ной информа-	предоставленной	в исследование новые
	только некоторые	ции	информации, во-	релевантные постав-
	из имеющихся у		влекает в иссле-	ленной задаче данные,
	него сведений		дование новые	предлагает новые ра-
			релевантные за-	курсы поставленной
			даче данные	задачи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54)

.54) Выпуск: 21.06.2021

Версия: V.2

Стр. 8/10

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори- тельно»	«удовлетвори- тельно»	«хорошо»	«отлично»
Критерий	«не зачтено»	«зачтено»		
4. Освоение стан-	В состоянии ре-	В состоянии	В состоянии ре-	Не только владеет алго-
дартных алгорит-	шать только фраг-	решать постав-	шать поставлен-	ритмом и понимает его
мов решения про-	менты поставлен-	ленные задачи в	ные задачи в со-	основы, но и предлагает
фессиональных за-	ной задачи в соот-	соответствии с	ответствии с за-	новые решения в рам-
дач	ветствии с задан-	заданным алго-	данным алгорит-	ках поставленной зада-
	ным алгоритмом,	ритмом	мом, понимает	чи
	не освоил предло-		основы предло-	
	женный алгоритм,		женного алго-	
	допускает ошибки		ритма	

13 ОСОБЕННОСТИ ПРЕПОДАВАНИЯ И ОСВОЕНИЯ ДИСЦИПЛИНЫ

При разработке образовательной технологии организации учебного процесса основной упор сделан на соединение активной и интерактивной форм обучения. Интерактивная форма позволяет аспирантам проявить самостоятельность в освоении теоретического материала и овладении практическими навыками, формирует интерес и позитивную мотивацию к учебе.

Основными видами учебной деятельности в ходе изучения курса являются лекции и практические занятия, консультирование по отдельным темам дисциплины.

При разработке образовательной технологии организации учебного процесса основной упор сделан на соединение активной и интерактивной форм обучения. Интерактивная форма позволяет студентам проявить самостоятельность в освоении теоретического материала и овладении практическими навыками, формирует интерес и позитивную мотивацию к учебе.

При подготовке лекционного материала преподаватель обязан руководствоваться рабочей программой по дисциплине. При чтении лекций преподаватель имеет право самостоятельно выбирать формы и методы изложения материала, которые будут способствовать качественному его усвоению. При этом преподаватель в установленном порядке может использовать технические средства обучения, имеющиеся на кафедре и в университете.

Вместе с тем, всякий лекционный курс является в определенной мере авторским, представляет собой творческую переработку материала и неизбежно отражает личную точку зрения лектора на предмет и методы его преподавания. В этой связи представляется целесообразным привести некоторые общие методические рекомендации по построению лекционного курса и формам его преподавания.

Практические занятия проводятся с целью приобретения навыков моделирования процессов пищевых производств. Важным звеном во всей системе обучения является самостоятельная работа. В широком смысле под ней следует понимать совокупность всей самостоятельной деятельности аспирантов, как в отсутствии преподавателя, так и в контакте с ним. Она является одним из основных методов поиска и приобретения новых знаний, работы с литературой, а также выполнения предложенных заданий. Преподаватель призван оказывать в этом методическую помощь аспирантам и осуществлять руководство их самостоятельной работой.

Необходимо контролировать степень усвоения текущего материала, а также уровень остаточных знаний по уже изученным темам.

При изучении курса предусмотрены следующие формы текущего контроля:

- контроль на практических занятиях.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54)

Выпуск: 21.06.2021

Версия: V.2

Стр. 9/10

Промежуточный контроль осуществляется в форме сдачи зачета и имеет целью определить степень достижения учебных целей по дисциплине.

С целью формирования мотивации и повышения интереса к предмету особое внимание при чтении курса необходимо обратить на темы, которые можно проиллюстрировать примерами из практической сферы, связывая теоретические положения с будущей профессиональной деятельностью аспирантов.

14 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При изучении дисциплины аспирант должен добросовестно посещать лекции и практические занятия.

Учебным планом предусмотрена самостоятельная работа аспирантов. Эта работа предполагает:

- подготовка к практическим занятиям (изучение лекционного материала);
- -самостоятельное изучение отдельных вопросов дисциплины по рекомендованной литературе и углубленную проработку некоторых тем, изложенных в лекциях;
 - подготовка к промежуточному контролю.

Аспирант обязан в полном объёме использовать время самостоятельной работы, предусмотренное настоящей рабочей программой, для изучения соответствующих разделов дисциплины, и своевременно обращаться к преподавателю в случае возникновения затруднений при выполнении самостоятельной работы.

Самостоятельная работа по дисциплине включает:

- изучение материала дисциплины по конспекту лекций, учебникам, технико-справочным пособиям.
 - выполнение практических работ;
 - подготовка к зачету.

Цель CP – приобретение умений применять приобретенные знания при решении практических задач.

Содержание внеаудиторной СР и распределение объема на нее определяется по темам дисциплины согласно тематическому плану рабочей программы.

Видами занятий для внеаудиторной самостоятельной работы являются:

для овладения знаниями: чтение текста (учебника, дополнительной литературы); составление плана текста; выписки из текста; конспектирование текста; работа со справочниками и др.;

для закрепления и систематизации занятий: работа с конспектом лекции; повторная работа над учебным материалом; составление плана и тезисов ответа; составление таблиц для систематизации учебного материала.

для формирования умений: выполнение практических работ;

для закрепления умений: решение вариативных задач и упражнений.

15 СВЕДЕНИЯ О РАБОЧЕЙ ПРОГРАММЕ И ЕЕ СОГЛАСОВАНИИ

Рабочая программа дисциплины «Оптимизация технологических процессов в машинах и аппаратах пищевых производств» представляет собой компонент образовательной программы аспирантуры по направлению подготовки 19.06.01 Промышленная экология и биотехнологии, направленность (профиль) подготовки 05.18.12 – «Процессы и аппараты пищевых производств».

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет»

(ФГБОУ ВО «КГТУ»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В МАШИНАХ И АППАРАТАХ ПИЩЕВЫХ ПРОИЗВОДСТВ» ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (АСПИРАНТУРА)

QD-6.2.2/РПД-30.(32.54) Выпуск: 21.06.2021 Версия: V.2 Стр. 10/10

Автор программы – Суслов А.Э., к.т.н., доцент, профессор кафедры Пищевые и холодильные машины.

Рабочая программа дисциплины рассмотрена и одобрена на заседании методической комиссии механико-технологического факультета (протокол № 13 от 29.06.2021 г.).