

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

Институт цифровых технологий

УТВЕРЖДАЮ Первый проректор

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММА (программа повышения квалификации) «АКТУАЛЬНЫЕ ПРОБЛЕМЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ»

Трудоемкость – 72 ч.

Разработчик: кафедра прикладной математики и информационных технологий

Авторы: канд. техн. наук, доцент Тристанов А.Б.

СОДЕРЖАНИЕ

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ПРОГРАММЕ	3
2 УЧЕБНЫЙ ПЛАН И КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК (ГРАФИК УЧЕБНОГО ПРОЦЕССА)	
3 РАБОЧИЕ ПРОГРАММЫ ПРЕДМЕТОВ, КУРСОВ, ДИСЦИПЛИН (МОДУЛЕЙ) ПРОГРАММЫ	5
3.1 Рабочая программа дисциплины (модуля) «Актуальные проблемы математического моделирования»	5
4 ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ	7
4.1 Материально-техническое обеспечение учебного процесса	7
4.2 Организация образовательного процесса	7
4.3 Кадровое обеспечение	7
4.4 Методические рекомендации по реализации программы	7
5 ИТОГОВАЯ АТТЕСТАЦИЯ ПО ПРОГРАММЕ	7

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ПРОГРАММЕ

Программа реализуется в соответствии с Федеральным законом Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», Приказом Минобрнауки России от 01.07.2013 № 499 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным профессиональным программам».

Цель: Повышение профессионального уровня в рамках имеющейся

квалификации

Задачи: Получение знаний в области теории моделирования,

Обзор основных областей математического моделирования

Категория Лица, имеющие, либо получающие (студенты) высшее образование

слушателей:

Срок освоения: 72 ч.

Режим занятий: Без отрыва от работы

Форма обучения Очная с применением ДОТ

Планируемые результаты обучения. Компетентностный профиль программы

знать:

- 1) базовые понятия математического (компьютерного) моделирование и постановки вычислительного эксперимента;
- 2) классификацию, свойства, этапы построения математических моделей; основные пакеты прикладных программ для решения задач математического (компьютерного) моделирования.

уметь:

- 1) применять естественнонаучные законы при построение математических моделей;
- планировать постановку вычислительного эксперимента; формулировать технические задачи в виде, удобном для их решения математическими методами;
- 3) выбирать наиболее эффективные пути построения адекватной математической модели исследуемого процесса, интерпретировать результаты моделирования;

владеть:

1) навыками составления моделей и алгоритмов их исследования; навыками использования математических методов и современной вычислительной техники в целях моделирования.

Перечень профессиональных компетенций в рамках имеющейся квалификации,

Способность применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (ФГОС ВО 09.03.01 Информатика и вычислительная техника)

качественное изменение которых осуществляется в результате обучения

2 УЧЕБНЫЙ ПЛАН

	Наименование предметов, курсов, дисциплин (модулей)	Всего часов	в том числе			Форма
№			лекции	практ. занятия	СР	Форма аттестации
1	Актуальные проблемы	68	38	10	20	Зачет
	математического					
	моделирования					
	Итоговая аттестация	4			4	Зачет
Итого		72	38	10	24	

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК (ГРАФИК УЧЕБНОГО ПРОЦЕССА)

№ учебной недели с начала обучения			
1	2		
	A		

□– учебная неделя;

А – промежуточная аттестация;

И – итоговая аттестация;

 \times – нет недели

3 РАБОЧИЕ ПРОГРАММЫ ПРЕДМЕТОВ, КУРСОВ, ДИСЦИПЛИН (МОДУЛЕЙ) ПРОГРАММЫ

3.1 Рабочая программа дисциплины (модуля) «Актуальные проблемы математического моделирования»

3.1.1 Пояснительная записка

Цель:	Формирование навыков применения математических методов в			
	формальной постановке задач моделирования.			
В результате из	В результате изучения слушатели должны:			
знать:	базовые понятия математического (компьютерного) моделирование и			
	постановки вычислительного эксперимента;			
	классификацию, свойства, этапы построения математических моделей;			
	основные пакеты прикладных программ для решения задач			
	математического (компьютерного) моделирования.			
уметь:	применять естественнонаучные законы при построение математических			
	моделей;			
	планировать постановку вычислительного эксперимента; -			
	формулировать технические задачи в виде, удобном для их решения			
	математическими методами;			
	выбирать наиболее эффективные пути построения адекватной			
	математической модели исследуемого процесса, интерпретировать			
	результаты моделирования;			
владеть:	навыками составления моделей и алгоритмов их исследования;			
	навыками использования математических методов и современной			
	вычислительной техники в целях моделирования.			

3.1.2 Учебно-тематический план

			в том числе			
№	Наименование разделов и тем	Всего часов	лекций	практ. занятий	СР	Проверка знаний
1	Теория моделирования и основы	10	8		2	опрос
	системного анализа					
2	Модели из фундаментальных	10	6	2	2	опрос
	законов природы					
3	Модели оптимального	12	6	2	4	опрос
	распределения ресурсов					
4	Теория планирования	12	6	2	4	опрос
	вычислительного эксперимента					
5	Основы стохастического	12	6	2	4	опрос
	моделирования					
6	Имитационное моделирование	12	6	2	4	опрос
	систем массового обслуживания					
7	Промежуточная аттестация	4			4	тестирова
						ние
	Итого:	72	38	10	24	

3.1.3 Содержание дисциплины

Тема	Содержание темы
Теория	Цели и задачи дисциплины. Место дисциплины в структуре
моделирования и	образовательной программы. Планируемые результаты освоения
основы системного	дисциплины.
анализа	Основные понятия системного подхода и анализ. Понятие системы.
unusinsu	Свойства систем. Эволюцию понятия системы. Роль наблюдателя в
	понятии системы. Целеполагание. Классификация систем. Понятие
	анализа и синтеза. Общие понятия моделирования. Модель.
	Классификация моделей. "Модель-алгоритм-программа". Понятие
	математической и компьютерной модели. Этапы построения
	математических моделей. Примеры простейших моделей. Понятие
	интерпретации в математическом моделировании. Методы оценки
	адекватности модели исследуемой системе. Моделирование в науке и
	технике. и т.д.
Модели из	Фундаментальные законы природы. Примеры моделей, получаемых
фундаментальных	из фундаментальных законов природы. О нелинейности
законов природы	математических моделей. Универсальность математических моделей.
Модели	Понятие задачи математического программирование. Задачи
оптимального	оптимизации Задача линейного программирования (ЗЛП).
распределения	Транспортная задача. Двойственная ЗЛП. Методы решения
ресурсов	оптимизационных задач. Графический способ решения ЗЛП.
Fight	Симплекс-метод. Метод градиентного спуска. Постановку задача
	оптимального распределения ресурсов.
Теория планирования	Основные понятия вычислительного эксперимента. Модель "черный
вычислительного	ящик". Реакция, фактор. Количественные и качественные факторы.
эксперимента	Факторное пространство. Функция реакции. Полиномиальные
-	модели планирования. Полный факторный эксперимент, дробный
	факторный эксперимент.
Основы	Понятие стохастического моделирования. Генератор случайных
стохастического	чисел. Оценка качества генераторов случайных чисел. Генерирование
моделирования	непрерывных случайных величин. Генерирование дискретных
	случайных величин. Генерирование потоков событий. Метод Монте-
**	Карло. Задача Бюффона. Вычисление площадей.
Имитационное и	Системы массового обслуживания. Имитационное моделирование.
аналитическое	Компоненты дискретно-событийной имитационной модели.
моделирование	Постановка задачи моделирования СМО к одним устройством.
систем массового	Правила останова. Моделирование системы управления запасами.
обслуживания	Критерии оценки работы СМО. Моделирование СМО с нескольким
	очередями, приоритетами обслуживания и пр. Моделирование
	сложных СМО. Аналитическое моделирование СМО. Уравнения
	Колмогорова. Предельные вероятности.

3.1.4 Промежуточная аттестация по дисциплине

Итоговая аттестация по программе проводится в форме тестирования.

В ходе тестирования слушателю предлагается ответить на 30 вопросов по различным темам программы.

Слушатель считается прошедшим успешно (с оценкой «зачтено») промежуточной аттестацию в случае, если получено более 18 правильных ответов из 30 предложенных (60%).

3.1.5 Обеспеченность образовательного процесса учебной литературой и информационными ресурсами

Материалы дисциплины для слушателей размещены – http://eios.klgtu.ru/mod
ЭИОС КГТУ. Доступ к материалам осуществляется после регистрации на основании договора об оказании образовательных услуг по программе профессиональной переподготовки.

4 ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

4.1 Материально-техническое обеспечение учебного процесса

При всех формах реализации программы должны соблюдаться требования соответствующих СанПиН.

4.2 Организация образовательного процесса

Реализация программы осуществляется в соответствии с требованиями к организации образовательного процесса в университете, изложенными в локальных нормативных актах.

4.3 Кадровое обеспечение

Реализация программы обеспечивается профессорско-преподавательским составом отвечающим одному из следующих критериев:

- наличие ученой степени (ученого звание) по направлению читаемых дисциплин;
- наличие опыта практической работы не менее 5 лет по направлению дисциплины и опыта преподавательской работы не менее 2 лет.

К реализации программы привлекаются как штатные преподаватели университета, так и сторонние специалисты по договорам гражданско-правового характера.

4.4 Методические рекомендации по реализации программы

В ходе освоения программы слушатели используют возможности интерактивной коммуникации со всеми участниками и заинтересованными сторонами образовательного процесса, ресурсы и информационные технологии посредством электронной информационной образовательной среды университета.

При дистанционном обучении преподавателю обеспечивается доступ к платформе проведения вебинаров в соответствии с расписанием. Технические и программные средства обеспечиваются слушателем самостоятельно.

При смешанном обучении занятия проводятся в компьютерных классах и мультимедийных аудиториях, оборудованных техническими средствами для проведения презентаций:

- персональный компьютер с ОС Windows 7 − 10;
- проектор;
- программное обеспечение MSOffice версий 2007 и выше;
- доступ в сеть Интернет.

5 ИТОГОВАЯ АТТЕСТАЦИЯ ПО ПРОГРАММЕ ДПО

Итоговая аттестация по программе проводится по совокупности достижений, полученных в ходе изучения программы и считается успешной в случае положительной оценки по дисциплине «Актуальные проблемы математического моделирования».

Согласовано

Директор института цифровых технологий, канд. техн. наук, доцент

А.Б. Тристанов

Astronne