Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

А. С. Лаврова

МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ

Учебно-методическое пособие — локальный электронный методический материал по изучению дисциплины для студентов, обучающихся в бакалавриате по направлению подготовки 08.03.01 Строительство

Калининград 2023

Рецензент

кандидат технических наук, доцент, профессор кафедры строительства ФГБОУ ВО «Калининградский государственный технический университет» В.А. Пименов

Лаврова, А. С.

Металлические конструкции: учеб.-методич. пособие — локальный электронный методический материал по изучению дисциплины для студ. бакалавриата по направлению подгот. 08.03.01 Строительство / **А. С. Лаврова.** — Калининград: ФГБОУ ВО «КГТУ», 2023. — 32 с.

Учебно-методическое пособие — локальный электронный методический материал содержит методические материалы по изучению дисциплины, которые включают тематический план занятий, методические указания по выполнению студентами самостоятельной работы, вопросы для самоконтроля по темам, оценочные средства и критерии оценивания.

Табл. 1., список литературы – 8 наименований

Локальный электронный методический материал. Учебно-методическое пособие. Рекомендовано к использованию в учебном процессе методической комиссией института морских технологий, энергетики и строительства 25.09.2023 г., протокол № 11

УДК 69.07

© Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2023 г. © Лаврова А. С., 2023 г.

Содержание

Введение	4
1. Тематический план занятий	.10
2. Методические указания по выполнению самостоятельной работы	
студентов	.24
Список рекомендованной литературы	.26
Приложение А. Контрольные вопросы по дисциплине «Металлические	
конструкции» для промежуточной аттестации в форме зачета	.27
Приложение Б. Вопросы к экзамену по дисциплине «Металлические	
конструкции»	.29

Введение

Дисциплина *Металлические конструкции* входит в состав основной профессиональной образовательной программы бакалавриата по направлению подготовки 08.03.01 Строительство.

Целью дисциплины является подготовка студентов к профессиональной деятельности в области расчета и проектирования металлических конструкций зданий и сооружений в соответствии с техническим заданием на основе нормативно-технической документации.

В результате освоения дисциплины студент должен:

- знать нормативно-методические документы в области расчета и проектирования металлических конструкций.;
- уметь работать с профессиональной документацией в области металлических конструкций;
- уметь выполнять расчеты металлических конструкций зданий и сооружений;
- владеть навыками организовывать и проводить работы по обследованию строительных конструкций зданий и сооружений промышленного и гражданского назначения на соответствие нормативно-методических документов;
- владеть технологией проектирования зданий и сооружений с использованием металлических конструкций.

Дисциплина опирается на компетенции, знания, умения и навыки студентов, полученные при изучении дисциплин из числа *инженерно- технического*, общепрофессионального и профессионального модулей.

Для оценки результатов освоения дисциплины используются:

- оценочные средства текущего контроля успеваемости;
- оценочные средства для промежуточной аттестации по дисциплине.

К оценочным средствам текущего контроля успеваемости относятся:

- тестовые задания по дисциплине;
- задания по темам лабораторных работ;
- задания по темам практических занятий;

- задания для выполнения контрольной работы (для заочной формы обучения);
- задания для выполнения расчетно-графической работы (для очнозаочной формы обучения).

К оценочным средствам для промежуточной аттестации в формах зачета, экзамена и курсового проекта относятся:

- вопросы к зачету;
- вопросы к экзамену;
- задания и контрольные вопросы по курсовому проекту.

В соответствии с учебным планом по дисциплине Металлические конструкции предусмотрено выполнение практических и лабораторных работ. выполнения практической лабораторной началом или обучающиеся изучают задание, и после методических указаний преподавателя приступают к его выполнению. Защита работы проводится либо на очередном практическом/лабораторном занятии, либо в часы индивидуальных или групповых консультаций преподавателя. Обучающийся, защитивший работу с оценку ответами на вопросы, получает «зачтено» за данную практическую/лабораторную работу.

Задание для выполнения контрольной / расчетно-графической работы обучающиеся получают начале семестра. В В процессе выполнения контрольной/расчетно-графической работы студент закрепляет умения и навыки, полученные в ходе изучения дисциплины на занятиях лекционного типа и практических занятиях. Выполнение контрольной/расчетно-графической работы является самостоятельным видом учебного процесса. В течение преподаватель осуществляет текущий контроль выполнения контрольной/расчетно-графической работы на практических занятиях. Обучающийся, защитивший работу с ответами на вопросы, получает оценку «зачтено» за контрольную/расчетно-графическую работу.

Задание для выполнения курсового проекта обучающиеся получают в начале семестра. В процессе выполнения курсового проекта студент закрепляет

умения и навыки, полученные в ходе изучения дисциплины. Выполнение курсового проекта является самостоятельным видом учебного процесса. При этом обучающемуся дается возможность самостоятельного решения отдельных вопросов проектирования конструкций металлического каркаса здания: компоновкой каркаса и расчетом его элементов. Студент несет полную ответственность за полученные результаты, принятые решения и окончание работы в назначенный срок. В течение семестра преподаватель осуществляет текущий контроль выполнения курсового проекта на практических занятиях.

Тестовые задания по дисциплине используются для текущего контроля освоения дисциплины. Целью тестирования является закрепление, углубление и систематизация знаний студентов, полученных на занятиях и в процессе самостоятельной работы. Тестирование студентов проводится на практических занятиях. Оценивание осуществляется по следующим критериям: «зачтено» – 50-100 % правильных ответов на заданные вопросы; «не зачтено» – менее 50 % правильных ответов.

Промежуточная аттестация по дисциплине Металлические конструкции проводится в форме зачета, защиты курсового проекта и экзамена.

Промежуточная аттестация в форме зачета проходит по результатам прохождения всех видов текущего контроля успеваемости. Положительная оценка («зачтено») выставляется студенту, успешно выполнившему и защитившему лабораторные работы, практические задания, контрольную/расчетно-графическую работу и получившему положительную оценку по результатам тестирования. В отдельных случаях вместо тестирования может проводиться устный или письменный опрос в виде ответов на вопросы. Вопросы к зачету приведены в приложении А.

Оценивание результатов защиты курсового проекта и экзамена выполняется по пятибалльной системе. Критерии оценивания представлены в табл. 1.

Выполненный курсовой проект представляется для проверки на кафедру строительства не позднее, чем за неделю до даты проведения промежуточной

аттестации по дисциплине. После проверки курсовой проект допускается к защите или отправляется на доработку. Если курсовой проект отправляется на доработку, следует устранить все замечания, указанные преподавателем, и повторно сдать его на проверку.

Если курсовой проект допускается к защите, студент должен быть готовым дать все необходимые пояснения по расчетам, чертежам и содержанию работы. По результатам защиты выставляется оценка, при выставлении оценки учитываются правильность выполнения заданий, оформление работы, а также качество защиты.

К оценочным средствам для промежуточной аттестации по дисциплине, проводимой в форме экзамена, относятся контрольные вопросы к экзамену. Экзаменационный билет содержит два теоретических вопроса и задачу. Список вопросов представлен в приложении Б.

Условия допуска к экзамену для студентов:

- 1. Выполненные и защищенные в полном объеме практические работы, предусмотренные программой.
- 2. Выполненные и защищенные в полном объеме лабораторные работы, предусмотренные программой.
- 3. Выполненный на оценку «зачтено» тест.
- 4. Выполненный и защищенный на положительную оценку («удовлетворительно», «хорошо», «отлично») курсовой проект.

Порядок и правила выставления экзамена по дисциплине преподаватель сообщает обучающимся в начале учебного семестра.

Таблица 1 – Система и критерии оценивания

Система	2	3	4	5
оценок	0-50 %	51-69 %	70-84 %	85-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
	тельно»	тельно»	•	
Критерий	«не зачтено»		«зачтено»	
1. Системность	Обладает	Обладает	Обладает	Обладает
и полнота	частичными и	минимальным	набором знаний,	полнотой знаний
знаний в	разрозненными	набором знаний,	достаточным для	и системным
отношении	знаниями, которые	необходимым для	системного	взглядом на
изучаемых	не может научно	системного	взгляда на	изучаемый объект
объектов	корректно	взгляда на	изучаемый объект	
	связывать между собой (только	изучаемый объект	ООБЕКТ	
	некоторые из			
	которых может			
	связывать между			
	собой)			
2. Работа с	Не в состоянии	Может найти	Может найти,	Может найти,
информацией	находить	необходимую	интерпретиро-	систематизиро-
формидном	необходимую	информацию в	вать и	вать необходимую
	информацию, либо	рамках	систематизиро-	информацию, а
	в состоянии	поставленной	вать	также выявить
	находить отдельные	задачи	необходимую	новые,
	фрагменты		информацию в	дополнительные
	информации в		рамках	источники
	рамках		поставленной	информации в
	поставленной		задачи	рамках поставленной
	задачи			задачи
2.11	TT	D	D	
3. Научное осмысление	Не может делать научно корректных	В состоянии осуществлять	В состоянии осуществлять	В состоянии осуществлять
изучаемого	выводов из	научно	систематический	систематический
явления,	имеющихся у него	корректный	и научно	и научно
процесса,	сведений, в	анализ	корректный	корректный
объекта	состоянии	предоставленной	анализ	анализ
	проанализировать	информации	предоставленной	предоставленной
	только некоторые		информации,	информации,
	из имеющихся у		вовлекает в	вовлекает в
	него сведений		исследование	исследование
			новые	новые
			релевантные задаче данные	релевантные поставленной
			зада то данные	задаче данные,
				предлагает новые
				ракурсы
				поставленной
				задачи
4. Освоение	В состоянии решать	В состоянии	В состоянии	Не только владеет
стандартных	только фрагменты	решать	решать	алгоритмом и
алгоритмов	поставленной	поставленные	поставленные	понимает его
решения	задачи в	задачи в	задачи в	основы, но и
профессиональ	соответствии с	соответствии с	соответствии с	предлагает новые
ных задач	заданным	заданным	заданным	решения в рамках

Система	2	3	4	5		
оценок	0-50 %	51-69 %	70-84 %	85-100 %		
	«неудовлетвори-	«удовлетвори-	«хорошо»	«онрицто»		
	тельно»	тельно»				
Критерий	«не зачтено»	«зачтено»				
	алгоритмом, не	алгоритмом	алгоритмом,	поставленной		
	освоил		понимает	задачи		
	предложенный		основы			
	алгоритм,		предложенного			
	допускает ошибки		алгоритма			

1. Тематический план занятий

Тема 1. Введение в металлические конструкции.

Ключевые вопросы темы

- 1. Краткий обзор развития металлических конструкций.
- 2. Область применения металлических конструкций.
- 3. Достоинства и недостатки металлических конструкций.
- 4. Принципы проектирования металлических конструкций.

Предусмотрены занятия лекционного типа (лекции).

Вопросы для самоконтроля по теме:

- 1. Охарактеризуйте область применения металлических конструкций.
- 2. Перечислите достоинства и недостатки металлических конструкций.
- 3. Каковы принципы проектирования металлических конструкций?

Тема 2. Свойства стали. Работа стали под нагрузкой.

- 1. Строительные стали и алюминиевые сплавы: структура, химический состав и свойства.
- 2. Работа стали под нагрузкой. Влияние различных факторов на свойства и характер разрушения стали: времени (старение стали), скорости и вида нагружения, температуры и агрессивности среды.
 - 3. Виды разрушения.
- 4. Хрупкое разрушение; факторы, способствующие хрупкому разрушению. Ударная вязкость.
 - 5. Многократное непрерывное нагружение, усталость металлов.
 - 6. Учет особенностей работы металла при проектировании.
- 7. Виды напряжений в металлических конструкциях. Работа стали при сложном напряженном состоянии.
 - 8. Понятие о сортаменте.

Предусмотрены занятия лекционного типа (лекции) и лабораторные занятия.

Тема лабораторной работы 1. Испытание стали на растяжение.

Цель работы: получение диаграммы растяжения стального образца; определение основных механических характеристик материала по диаграмме растяжения; определение марки испытуемого материала.

Тема лабораторной работы 2. Сортамент прокатной стали.

Цель работы: определение номера профиля и ГОСТа для образцов прокатных профилей; проверка соответствия геометрических параметров прокатных профилей требованиям ГОСТов.

Вопросы для самоконтроля по теме:

- 1. Какой химический состав у стали? Какова ее структура? Перечислите свойства стали.
 - 2. Какие факторы влияют на свойства и характер разрушения стали?
 - 3. Перечислите виды разрушения стали.
 - 4. Какие факторы способствуют хрупкому разрушению стали?
 - 5. Что означает понятие усталость металла?
 - 6. Перечислите виды напряжений в металлических конструкциях.
 - 7. Перечислите основные типы прокатных сечений.

Тема 3. Работа элементов металлических конструкций и основы расчета их надежности.

- 1. Основы метода расчета по предельным состояниям.
- 2. Расчет на прочность центрально сжатых и растянутых элементов.
- 3. Работа и расчет прочности изгибаемых элементов в упругой и упругопластической стадиях.
 - 4. Расчет на прочность при изгибе в двух плоскостях.
 - 5. Расчет на прочность внецентренно сжатых и сжатоизогнутых элементов.

- 6. Устойчивость центрально, внецентренно сжатых, сжатоизогнутых и изгибаемых элементов.
 - 7. Местная устойчивость полки и стенки изгибаемых элементов.

Предусмотрены занятия лекционного типа (лекции) и лабораторные занятия.

Тема лабораторной работы 3. Определение нормальных напряжений и деформаций при изгибе.

Цель работы: проверить формулы для определения нормальных напряжений и перемещений при плоском изгибе балки экспериментальным путем.

Вопросы для самоконтроля по теме:

- 1. Какие коэффициенты учитывают при расчёте по методу предельных состояний?
- 2. Какие группы предельных состояний учитывают при расчете металлических конструкций?
- 3. Опишите порядок расчета прочности изгибаемых элементов в упругой стадии.
- 4. Опишите порядок расчета центрально-сжатых элементов по первой группе предельных состояний.
 - 5. Опишите порядок расчета устойчивости внецентренно сжатых элементов.

Тема 4. Соединение металлических конструкций. Сварные соединения

- 1. Общая характеристика соединений.
- 2. Виды сварки. Влияние сварки на металл.
- 3. Типы сварных швов и сварных соединений.
- 4. Работа и расчет стыковых сварных швов.
- 5. Работа и расчет угловых сварных швов.
- 6. Конструктивные требования к сварным соединениям

Предусмотрены занятия лекционного типа (лекции) и практические занятия.

Тема практической работы 1. Конструирование и расчет сварных соединений стыковыми и угловыми швами.

Цель работы: научиться выполнять расчет и конструирование стыковых и угловых сварных соединений.

Вопросы для самоконтроля по теме:

- 1. Перечислите виды сварки.
- 2. Перечислите типы сварных швов и сварных соединений.
- 3. Опишите порядок расчета стыковых сварных швов.
- 4. Опишите порядок расчета угловых сварных швов.
- 5. Какой нормативный документ регламентирует конструктивные требования к сварным соединениям?

Тема 5. Соединение металлических конструкций. Болтовые соединения.

Ключевые вопросы темы

- 1. Область применения болтовых соединений. Виды болтов.
- 2. Работа и расчет соединений на обычных болтах.
- 3. Работа и расчет соединений на высокопрочных болтах.
- 4. Конструктивные требования к болтовым соединениям.

Предусмотрены занятия лекционного типа (лекции) и практические занятия.

Тема практической работы 2. Конструирование и расчет болтовых соединений.

Цель работы: научиться выполнять расчет и конструирование болтовых соединений различного типа.

Вопросы для самоконтроля по теме:

- 1. Какова область применения болтовых соединений?
- 2. Болты каких классов точности применяют в строительных металлических конструкциях?
 - 3. Опишите порядок расчета соединений на обычных болтах.

- 4. Опишите порядок расчета соединений на высокопрочных болтах.
- 5. Какой нормативный документ регламентирует конструктивные требования к болтовым соединениям?

Тема 6. Балки и балочные клетки

Ключевые вопросы темы

- 1. Область применения балочных конструкций.
- 2. Классификация балок. Типы сечений балок.
- 3. Компоновка балочных перекрытий: основные схемы, их достоинства и недостатки.
 - 4. Проектирование настилов и прокатных балок.
 - 5. Проектирование составных балок.
 - 6. Конструирование и расчет узлов сопряжения, опирания и стыка балок.
- 7. Особенности бистальных, перфорированных балок, балок с гофрированной стенкой, балок с гибкой стенкой, предварительно напряженных балок.

Предусмотрены занятия лекционного типа (лекции) и практические занятия.

Тема практической работы 3. Проектирование сплошных стальных настилов.

Цель работы: научиться подбирать толщину сплошного стального настила.

Тема практической работы 4. Расчет и конструирование прокатных и сварных балок в упругой и упругопластической стадиях.

Цель работы: научиться выполнять подбор и проверку сечений прокатных и сварных балок в упругой и упругопластической стадиях.

Тема практической работы 5. Местная устойчивость элементов сечения составных балок.

Цель работы: научиться выполнять проверку местной устойчивости элементов сечения составных балок.

Тема практической работы 6. Конструирование и расчет узлов опирания, сопряжения и стыка балок.

Цель работы: научиться выполнять расчет и конструирование узлов сопряжения балок, опирания балок на колонны, стыка балок.

Вопросы для самоконтроля по теме:

- 1. Какие типы балочных клеток существуют? Как тип балочной клетки влияет на тип сопряжения балок?
 - 2. Опишите порядок расчета стальных сплошных настилов.
 - 3. Опишите порядок расчета прокатных балок.
 - 4. Опишите порядок расчета составных балок.
- 5. Опишите порядок расчета и конструирования узлов сопряжения, опирания и стыка балок.
- 6. Какие варианты усовершенствования балочных конструкций применяются?

Тема 7. Колонны и стержни работающие на центральное сжатие

Ключевые вопросы темы

- 1. Область применения стержней работающих на центральное сжатие. Общие характеристики. Классификация колонн.
 - 2. Проектирование центрально сжатых колонн сплошного сечения.
 - 3. Проектирование центрально сжатых колонн сквозного сечения.
 - 4. Местная устойчивость полки и стенки центрально сжатых элементов.
 - 5. Базы и оголовки центрально сжатых колонн.

Предусмотрены занятия лекционного типа (лекции), и практические занятия.

Тема практической работы 7. Расчет и конструирование центрально сжатой сплошной и сквозной колонн.

Цель работы: научиться выполнять подбор и проверку сечений центрально сжатой сплошной и сквозной колонн.

Тема практической работы 8. Конструирование и расчет узлов центрально сжатых колонн.

Цель работы: научиться выполнять расчет и конструирование базы и оголовка центрально сжатой колонны.

Вопросы для самоконтроля по теме:

- 1. В каких конструкциях встречаются стержни работающие на центральное сжатие?
 - 2. Опишите порядок расчета центрально сжатых колонн сплошного сечения.
 - 3. Опишите порядок расчета центрально сжатых колонн сквозного сечения.
- 4. Опишите порядок проверки местная устойчивости полки и стенки центрально сжатых элементов.
- 5. Опишите порядок расчета и конструирования базы и оголовка центрально сжатых колонн.

Тема 8. Каркасы одноэтажных производственных зданий

Ключевые вопросы темы

- 1. Общая характеристика каркасов. Основные требования к конструкциям каркаса.
- 2. Компоновка каркаса (выбор конструктивной схемы, температурные блоки, расстановка связей, учет габаритов кранов, определение габаритов конструкций).
 - 3. Выбор расчетных схем.

Предусмотрены занятия лекционного типа (лекции) и практические занятия.

Тема практической работы 9. Компоновка каркаса.

Цель работы: научиться выполнять компоновку каркаса одноэтажного промышленного здания (сетка колонн, связи по колоннам и покрытию, поперечная рама каркаса) в соответствии с требованиями СП 16.13330.2017 «Стальные конструкции».

Вопросы для самоконтроля по теме:

- 1. Перечислите основные требования к конструкциям каркаса одноэтажных производственных зданий.
- 2. Перечислите основные конструктивные схемы каркасов одноэтажных производственных зданий.
 - 3. Перечислите типы связей каркаса, требования к их расстановке.
 - 4. Перечислите факторы, влияющие на выбор расчетной схемы каркаса.

Тема 9. Работа и статический расчет каркаса

Ключевые вопросы темы

- 1. Виды воздействий на каркас: постоянная, снеговая и ветровая нагрузки, крановые нагрузки от мостовых опорных и подвесных кранов.
 - 2. Характер работы поперечной рамы каркаса.
 - 3. Характер работы продольных конструкций каркаса.
 - 4. Характер работы связей покрытия.
 - 5. Характер работы торцевого и продольного фахверка.
 - 6. Статический расчет каркаса производственного здания.
 - 7. Учет пространственной работы каркаса при расчете поперечных рам.

Предусмотрены занятия лекционного типа (лекции), лабораторные и практические занятия.

Тема практической работы 10. Определение нагрузок на каркас одноэтажного производственного здания.

Цель работы: научиться определять постоянные, снеговые, ветровые и крановые нагрузки на поперечную раму каркаса производственного здания в соответствии с требованиями СП 20.13330.2016 «Нагрузки и воздействия».

Тема лабораторной работы 4. Статический расчет поперечной рамы каркаса производственного здания.

Цель работы: научиться определять усилия в поперечной раме каркаса от различных сочетаний нагрузок с помощь программного комплекса и выполнять анализ полученных результатов.

Вопросы для самоконтроля по теме:

- 1. Перечислите виды воздействий на каркас производственного здания.
- 2. Перечислите элементы входящие в состав поперечной рамы каркаса. Охарактеризуйте работу поперечной рамы каркаса.
- 3. Перечислите продольные элементы каркаса, их назначение. Охарактеризуйте работу продольных конструкций каркаса.
- 4. Перечислите виды связей каркаса, их назначение. Охарактеризуйте работу связей покрытия.
- 5. Дайте определение фахверка в составе металлического каркаса. Охарактеризуйте работу торцевого и продольного фахверка.
- 6. Какие методы статического расчет каркаса производственного здания и его конструкций используются. Как учитывается пространственная работа каркаса при расчете поперечных рам.

Тема 10. Конструкции покрытия

Ключевые вопросы темы

- 1. Прогоны покрытия. Характер работы прогонов покрытия. Расчет и проектирование сплошных и сквозных прогонов.
- 2. Фермы покрытия. Общая характеристика стропильных и подстропильных ферм. Расчет и проектирование ферм. Конструирование и расчет узлов ферм.

Предусмотрены занятия лекционного типа (лекции), лабораторные и практические занятия.

Тема лабораторной работы 5. Статический расчет фермы покрытия.

Цель работы: научиться определять усилия в стержнях фермы от различных сочетаний нагрузок с помощь программного комплекса и выполнять анализ полученных результатов.

Тема практической работы 11. Подбор и проверка сечений стержней стропильной фермы.

Цель работы: научиться выполнять подбор и проверку элементов ферм различных типов сечения.

Тема практической работы 12. Конструирование и расчет узлов стропильных ферм.

Цель работы: научиться выполнять расчет узлов стропильных ферм со стержнями различного типа сечения.

Вопросы для самоконтроля по теме:

- 1. Прогоны покрытия. Охарактеризуйте работу прогонов покрытия.
- 2. Опишите порядок расчета сплошных прогонов.
- 3. Опишите порядок расчета сквозных прогонов.
- 4. Перечислите правила компоновка стропильных ферм, типы сечений стержней ферм.
 - 5. Какие нагрузки действуют на стропильные и подстропильные фермы?
- 6. Как обеспечивается пространственная жёсткость и устойчивости стропильных ферм в составе покрытия?
 - 7. Опишите порядок расчета стержней ферм.
- 8. Перечислите виды узлов ферм. В чем заключается принцип центрирования узла фермы на фасонке?
- 9. Опишите порядок расчета и конструирования узлов ферм из стержней различного типа сечений.

Тема 11. Колонны производственных зданий.

- 1. Конструктивные схемы колонн, типы сечений, возможные формы потери устойчивости и расчетные длины колонн.
- 2. Проектирование сплошных колонн: выбор расчетных комбинаций усилий, подбор сечения, проверка прочности, общей и местной устойчивости.
- 3. Проектирование сквозных колонн: выбор расчетных комбинаций усилий, определение расчетных усилий в ветвях и решетке, подбор сечений, проверка устойчивости ветвей, решетки и всей колонны в плоскости действия момента как единого стержня.

4. Конструирование, особенности работы и расчета сопряжения надкрановой и подкрановой частей колонны, базы сплошной и сквозной колонн.

Предусмотрены занятия лекционного типа (лекции) и практические занятия.

Тема практической работы 13. Подбор и проверка сечения внецентренно-сжатой сплошной и сквозной колонн.

Цель работы: научиться выполнять подбор и проверку сечения внецентренно-сжатой сплошной и сквозной колонны каркаса здания.

Тема практической работы 14. Конструирование и расчет узлов колонн каркаса.

Цель работы: научиться выполнять конструирование и расчет узла сопряжения подкрановой и надкрановой частей колонны; базы колонны.

Вопросы для самоконтроля по теме:

- 1. Какие конструктивные схемы колонн используют в каркасах одноэтажных производственных зданий?
- 2. Опишите возможные формы потери устойчивости колонн. Как определить расчетную длину колонны?
- 3. Опишите порядок расчета сплошных колонн каркаса одноэтажного производственного здания.
- 4. Опишите порядок расчета сквозных колонн каркаса одноэтажного производственного здания.
- 5. Опишите порядок расчета и конструирования узлов сопряжения надкрановой и подкрановой частей колонны, базы колонн.

Тема 12. Подкрановые конструкции.

- 1. Состав подкрановых конструкций, типы подкрановых балок и тормозных конструкций, нагрузки.
 - 2. Проектирование подкрановых балок сплошного сечения и решетчатых.

3. Конструирование, особенности работы и расчета опорных узлов подкрановых балок и тормозных конструкций. Упоры, крановые рельсы и их крепление.

Предусмотрены занятия лекционного типа (лекции), лабораторные и практические занятия.

Тема лабораторной работы 6. Особенности работы подкрановых балок.

Цель работы: изучить характер работы подкрановых балок с помощью метода численного моделирования.

Тема практической работы 15. Подбор и проверка сечения подкрановой балки.

Цель работы: научиться выполнять подбор и проверку сечения (сплошного) подкрановой балки.

Тема практической работы 16. Конструирование и расчет узлов подкрановых балок.

Цель работы: научиться выполнять конструирование и расчет опорного узла подкрановой балки.

Вопросы для самоконтроля по теме:

- 1. Перечислите конструктивные элементы, входящие в состав подкрановых конструкций.
 - 2. Перечислите типы подкрановых балок и тормозных конструкций.
 - 3. Какие нагрузки действуют на подкрановые балки?
 - 4. Опишите порядок расчета подкрановых балок сплошного сечения
 - 5. Опишите порядок расчета решетчатых подкрановых балок.
- 6. Опишите порядок расчета и конструирования опорных узлов подкрановых балок.
- 7. Для чего служат упоры на подкрановых балках? Какие конструкции упоров применяют?
 - 8. Как осуществляется крепление крановых рельсов к подкрановым балкам?

Тема 13. Листовые металлические конструкции

Ключевые вопросы темы

- 1. Область применения, классификация.
- 2. Нагрузки и воздействия на листовые конструкции.
- 3. Особенности и основные положения расчета
- 4. Вертикальные, горизонтальные и сферические резервуары. Газгольдеры переменного и постоянного объема. Бункеры и силосы.

Предусмотрены занятия лекционного типа (лекции).

Вопросы для самоконтроля по теме:

- 1. В какой области применяются листовые металлические конструкции? Их классификация.
 - 2. Перечислите нагрузки и воздействия на листовые конструкции.
 - 3. Перечислите особенности расчета листовых металлических конструкций.
- 4. Опишите основные положения расчета листовых металлических конструкций.

Тема 14. Легкие стальные тонкостенные конструкции (ЛСТК)

Ключевые вопросы темы

- 1. Общие сведения об ЛСТК. Область применения.
- 2. Устойчивость элементов ЛСТК. Местная потеря устойчивости.
- 3. Краткие сведения об узловых соединениях ЛСТК.

Предусмотрены занятия лекционного типа (лекции).

Вопросы для самоконтроля по теме:

- 1. Перечислите основные области применения ЛСТК.
- 2. Какой нормативный документ регламентирует проектирование ЛСТК?
- 3. Какие из видов потери устойчивости могут быть в ЛСТК и их отдельных элементах?
 - 4. Что такое несовершенство формы сечения и как оно учитывается при проектировании ЛСТК?

2. Методические указания по выполнению самостоятельной работы студентов

Самостоятельная работа студентов является обязательной образовательного процесса. Наряду с изучением лекционного материала необходимо самостоятельно более подробно рассмотреть указанные в данном пособии темы. Подготовка к практическим занятиям заключается в изучении теоретического материала с использованием учебно-методических пособий, нормативной документации В области проектирования металлических конструкций. Только после ЭТОГО онжом приступать К выполнению практических заданий.

После проработки теоретического материала, выполнения практической работы нужно ответить на вопросы для самоконтроля. Ответы должны быть развернутыми, опираться на данные из нормативной документации, дополнительной литературы, материалов исследований и своего опыта.

При освоении данной дисциплины студент должен выполнить контрольную работу (только для заочной формы обучения), расчетнографическую работы (только для очно-заочной формы обучения), курсовой проект (для всех форм обучения), пройти тестирование.

При выполнении контрольной работы, расчетно-графической работы и курсового проекта следует придерживаться следующих правил:

- исходные данные должны полностью соответствовать варианту задания;
- все решения, принятые при расчете и конструировании металлических конструкций должны быть обоснованы;
 - результаты расчета необходимо сопровождать пояснениями.

Контрольную работу, расчетно-графическую работу и курсовой проект рекомендуется начинать выполнять сразу после прослушивания необходимого теоретического материала на лекциях, выполнения соответствующих заданий на практических занятиях.

Тестирование проводится на практических занятиях, каждый вариант теста включает в себя 15-30 вопросов.

Список рекомендованной литературы

- 1. Федеральный закон «Технический регламент о безопасности зданий и сооружений» от 30.12.2009 г. № 384-Ф3
- 2. ГОСТ 27751-2014. Надежность строительных конструкций и оснований. Основные положения. Введ. 2015–07-01. Москва: Стандартинформ, 2019. 15 с.
- 3. СП 16.13330.2017. Стальные конструкции. Актуализированная редакция СНиП II-23-81*. Москва: Стандартинформ, 2017. 141 с.
- 4. СП 294.1325800.2017. Конструкции стальные. Правила проектирования. Москва: Стандартинформ, 2017. 164 с.
- 5. Металлические конструкции. Том 1. Элементы конструкций: учебник для строит вузов / В.В. Горев, Б.Ю. Уваров, В.В. Филиппов и др.; под ред. В.В. Горева. Москва: Изд-во «Высшая школа», 2004 282 с.
- 6. Металлические конструкции. Том 2. Конструкции зданий: учебник для строит вузов / В.В. Горев, Б.Ю. Уваров, В.В. Филиппов и др.; под ред. В.В. Горева. Москва: Изд-во «Высшая школа», 1999 528 с.
- 7. Проектирование металлических конструкций. Часть 1: Металлические конструкции. Материалы и основы проектирования. Учебник для ВУЗов / С. М. Тихонов, В. Н. Алехин, З. В. Беляева и др.; под общей ред. А.Р. Туснина. Москва: Изд-во «Перо», 2020 468 с.
- 8. Проектирование металлических конструкций. Часть 2: Металлические конструкции. Специальный курс. Учебник для ВУЗов / А.Р. Туснин, В.А. Рыбаков, Т.В. Назмеева и др.; под общей. ред. А.Р. Туснина. Москва: Издательство «Перо», 2020 436 с.

Приложение А.

Контрольные вопросы по дисциплине «Металлические конструкции» для промежуточной аттестации в форме зачета

- 1. Область применения металлических конструкций. Достоинства и недостатки металлических конструкций.
- 2. Строительные стали и алюминиевые сплавы: структура, химический состав и свойства.
- 3. Влияние различных факторов на свойства и характер разрушения стали: времени, скорости и вида нагружения, температуры и агрессивности среды.
 - 4. Виды разрушения стали.
- 5. Факторы, способствующие хрупкому разрушению. Работа стали при переменных нагрузках.
 - 6. Учет особенностей работы металла при проектировании.
- 7. Виды напряжений в металлических конструкциях. Работа стали при сложном напряженном состоянии.
- 8. Расчёт металлических конструкций по предельным состояниям. Группы предельных состояний, предельные неравенства.
- 9. Расчёт металлических конструкций по предельным состояниям. Коэффициенты, учитываемые при расчёте по методу предельных состояний. Расчетные характеристики материала металлических конструкций.
 - 10. Расчёт изгибаемых элементов в упругой и упруго-пластической стадиях.
 - 11. Расчёт центрально-сжатых и центрально-растянутых элементов.
 - 12. Расчёт внецентренно сжатых и сжатоизогнутых элементов.
- 13. Сварные соединения. Виды сварки и механические характеристики швов. Типы сварных швов и их работа в сварных соединениях.
 - 14. Сварные соединения. Расчёт стыковых сварных швов.
 - 15. Сварные соединения. Расчёт угловых сварных швов.
- 16. Болтовые соединения. Область применения. Виды болтов. Расчёт болтового соединения на обычных болтах на действие продольной осевой силы.

- 17. Болтовые соединения. Расчёт болтового соединения на обычных болтах на срез, смятие.
- 18. Болтовые соединения. Расчёт болтового соединения на высокопрочных болтах.
- 19. Классификация балок. Типы сечений балок. Компоновка балочных перекрытий: основные схемы, их достоинства и недостатки
 - 20. Проектирование сплошных настилов и прокатных балок.
 - 21. Проектирование составных балок.
- 22. Расчет и конструирование узлов сопряжения и опорных узлов металлических балок.
 - 23. Пути усовершенствования балочных конструкций.
- 24. Область применения стержней работающих на центральное сжатие. Общие характеристики. Классификация колонн.
 - 25. Проектирование центрально сжатых колонн сплошного сечения.
 - 26. Проектирование центрально сжатых колонн сквозного сечения.
- 27. Проверка местной устойчивости полки и стенки центрально сжатых элементов.
 - 28. Расчет и конструирование базы и оголовка центрально сжатых колонн.

Приложение Б.

Вопросы к экзамену по дисциплине «Металлические конструкции»

- 1. Область применения металлических конструкций. Достоинства и недостатки металлических конструкций.
- 2. Строительные стали и алюминиевые сплавы: структура, химический состав и свойства.
- 3. Влияние различных факторов на свойства и характер разрушения стали: времени, скорости и вида нагружения, температуры и агрессивности среды.
 - 4. Виды разрушения стали.
- 5. Факторы, способствующие хрупкому разрушению. Работа стали при переменных нагрузках.
 - 6. Учет особенностей работы металла при проектировании.
- 7. Виды напряжений в металлических конструкциях. Работа стали при сложном напряженном состоянии.
- 8. Расчёт металлических конструкций по предельным состояниям. Группы предельных состояний, предельные неравенства.
- 9. Расчёт металлических конструкций по предельным состояниям. Коэффициенты, учитываемые при расчёте по методу предельных состояний. Расчетные характеристики материала металлических конструкций.
 - 10. Расчёт изгибаемых элементов в упругой и упруго-пластической стадиях.
 - 11. Расчёт центрально-сжатых и центрально-растянутых элементов.
 - 12. Расчёт внецентренно сжатых и сжатоизогнутых элементов.
- 13. Сварные соединения. Виды сварки и механические характеристики швов. Типы сварных швов и их работа в сварных соединениях.
 - 14. Сварные соединения. Расчёт стыковых сварных швов.
 - 15. Сварные соединения. Расчёт угловых сварных швов.
- 16. Болтовые соединения. Область применения. Виды болтов. Расчёт болтового соединения на обычных болтах на действие продольной осевой силы.

- 17. Болтовые соединения. Расчёт болтового соединения на обычных болтах на срез, смятие.
- 18. Болтовые соединения. Расчёт болтового соединения на высокопрочных болтах.
- 19.Классификация балок. Типы сечений балок. Компоновка балочных перекрытий: основные схемы, их достоинства и недостатки
 - 20. Проектирование сплошных настилов и прокатных балок.
 - 21. Проектирование составных балок.
- 22. Расчет и конструирование узлов сопряжения и опорных узлов металлических балок.
 - 23. Пути усовершенствования балочных конструкций.
- 24.Область применения стержней работающих на центральное сжатие. Общие характеристики. Классификация колонн.
 - 25. Проектирование центрально сжатых колонн сплошного сечения.
 - 26. Проектирование центрально сжатых колонн сквозного сечения.
- 27. Проверка местной устойчивости полки и стенки центрально сжатых элементов.
 - 28. Расчет и конструирование базы и оголовка центрально сжатых колонн.
- 29.Общая характеристика каркасов производственных зданий. Основные требования к конструкциям каркаса.
- 30. Компоновка каркаса (выбор конструктивной схемы, температурные блоки, расстановка связей, учет габаритов кранов, определение габаритов конструкций). Выбор расчетных схем.
- 31.Виды воздействий на каркас: постоянная, снеговая и ветровая нагрузки, крановые нагрузки от мостовых опорных и подвесных кранов. Характер работы поперечной рамы каркаса.
 - 32. Характер работы продольных конструкций каркаса.
 - 33. Характер работы связей покрытия и торцевого и продольного фахверка.
- 34.Статический расчет каркаса производственного здания. Учет пространственной работы каркаса при расчете поперечных рам.

- 35.Прогоны покрытия. Характер работы прогонов покрытия. Расчет и проектирование сплошных и сквозных прогонов.
- 36.Стропильные и подстропильные фермы покрытия. Компоновка ферм. Типы сечений стержней ферм.
- 37. Нагрузки, действующие на стропильную и подстропильные формы. Статический расчёт фермы. Обеспечение пространственной жёсткости и устойчивости ферм в составе покрытия.
 - 38. Расчет стержней ферм и связей.
- 39. Конструирование промежуточных, опорных и стыковых монтажных узлов ферм из спаренных уголков.
 - 40.Особенности проектирования ферм из гнуто-сварных (ГСП) профилей.
 - 41.Особенности конструирования узлов ферм из ГСП.
- 42. Конструктивные схемы колонн каркаса одноэтажного производственного здания; типы сечений колонн.
- 43.Возможные формы потери устойчивости и расчетные длины колонн каркасов одноэтажных производственных зданий.
- 44.Проектирование сплошных колонн: выбор расчетных комбинаций усилий, подбор сечения, проверка прочности, общей и местной устойчивости.
- 45.Проектирование сквозных колонн: выбор расчетных комбинаций усилий, определение расчетных усилий в ветвях и решетке, подбор сечений, проверка устойчивости ветвей, решетки и всей колонны в плоскости действия момента как единого стержня.
- 46.Конструирование, особенности работы и расчета сопряжения надкрановой и подкрановой частей колонны.
- 47. Конструирование, особенности работы и расчета базы сплошной и сквозной колонн.
- 48.Состав подкрановых конструкций, типы подкрановых балок и тормозных конструкций, нагрузки.
 - 49. Проектирование подкрановых балок сплошного сечения
 - 50.Проектирование решетчатых подкрановых балок.

- 51. Конструирование, особенности работы и расчета опорных узлов подкрановых балок и тормозных конструкций.
 - 52. Упоры, крановые рельсы и их крепление. Расчет упоров.
- 53.Область применения Листовых металлических конструкций, их классификация.
 - 54. Нагрузки и воздействия на листовые металлические конструкции.
- 55.Особенности и основные положения расчета листовых металлических конструкций.
- 56.Вертикальные, горизонтальные и сферические резервуары. Газгольдеры переменного и постоянного объема. Бункеры и силосы.
 - 57. Общие сведения об ЛСТК. Область применения.
 - 58. Устойчивость элементов ЛСТК. Местная потеря устойчивости.
 - 59. Краткие сведения об узловых соединениях ЛСТК.

Локальный электронный методический материал

Анна Сергеевна Лаврова

МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ

Редактор И. Голубева

Уч.-изд. л. 2,0. Печ. л. 2,0.