Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Е.П. Шамаев

ПРОГРАММИРОВАНИЕ МИКРОПРОЦЕССОРНЫХ СИСТЕМ

Учебно-методическое пособие по изучению дисциплины для студентов бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств

Калининград Издательство ФГБОУ ВО «КГТУ» 2022

Рецензент:

кандидат технических наук,

и. о. заведующего кафедрой цифровых систем и автоматизации института цифровых технологий ФГБОУ ВО «Калининградский государственный технический университет» В.И. Устич

Шамаев, Е.П.

Программирование микропроцессорных систем: учеб.-метод. пособие по изучению модуля дисциплин для студентов бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств / **Е.П. Шамаев.** – Калининград: Изд-во ФГБОУ ВО «КГТУ», 2022. – 19 с.

В учебно-методическом пособии приведен тематический план по дисциплине и даны методические указания по её самостоятельному изучению, подготовке к лабораторным и практическим занятиям, подготовке и сдаче зачета.

Пособие подготовлено в соответствии с требованиями утвержденной рабочей программы и входит в состав элективного модуля по выбору - Эксплуатация систем автоматизации технологических процессов и производств образовательной программы бакалавриата по направлению 15.03.04 Автоматизация технологических процессов и производств.

Учебно-методическое пособие рассмотрено и одобрено в качестве локального электронного методического материала кафедрой цифровых систем и автоматизации 28 сентября 2022 г., протокол № 2

Учебно-методическое пособие ПО изучению дисциплины рекомендовано к использованию в качестве локального электронного методического материала в учебном процессе методической комиссией цифровых технологий ФГБОУ BO «Калининградский института государственный технический университет» 06 декабря 2022 протокол № 10

ОГАВЛЕНИЕ

1.Введение	4
2. Тематический план	5
3. Содержание дисциплины	7
4. Методические указания по проведению практических з	занятий9
5. Методические указания по проведению лабораторных з	анятий9
6.Методические указания по выполнение само	стоятельной
работы	10
7. Методические указания по проведению занятий и	и освоению
дисциплины	11
8. Требования к аттестации по дисциплине	12
8.1. Текущая аттестация	12
8.2. Промежуточная аттестация по дисциплине	15
9. Заключение	17
10. Библиографический список	18

1 Введение

Данное учебно-методическое пособие предназначено для студентов направления подготовки 15.03.04 Автоматизация технологических процессов и производств, изучающих дисциплину «Программирование микропроцессорных систем».

Целью освоения дисциплины является формирование знаний и навыков по применению современных средств автоматизированного проектирования, разработке алгоритмического и программного обеспечения средств и систем автоматизации и управления процессами.

Задачи изучения дисциплины:

- формирование способности аккумулировать научно-техническую информацию, отечественный и зарубежный опыт в области программирования микропроцессорных систем;
- приобретение теоретических знаний и практических навыков по разработке программного обеспечения микропроцессорных систем автоматизации и управления процессами;
- приобретение практических навыков работы с современными микроконтроллерами.

В результате изучения дисциплины студент должен:

знать:

- основные понятия о программировании микропроцессорных систем;
- основные принципы работы программируемых микроконтроллеров;
- программные среды и языки программирования;
- принципы Scada систем;

уметь:

- проектировать несложные АРМ;
- подключать ОРС серверы;
- разрабатывать и отлаживать проект в Master Scada;

владеть:

- методами автоматизированного проектирования по разработке алгоритмического и программного обеспечения средств и систем автоматизация и управления технологическими процессами;
- методами выбора OPC серверов и их подключении к проекту Master Scada.

Дисциплина «Программирование микропроцессорных систем» входит состав элективного выбору Эксплуатация модуля ПО систем автоматизации технологических процессов и производств образовательной 15.03.04 программы бакалавриата ПО направлению подготовки Автоматизация технологических процессов и производств.

Дисциплина опирается на компетенции, знания, умения и навыки обучающихся, полученные изучении при таких дисциплин, «Математический анализ», «Физика», «Разработка программного обеспечения автоматизации управления технологическими систем И процессами», «Микропроцессорные системы автоматизации и управления».

Результаты освоения дисциплины могут быть использованы при выполнении выпускной квалификационной работы, а также в дальнейшей профессиональной деятельности.

Далее в пособии представлен тематический план, содержащий перечень изучаемых тем, выполняемых лабораторных работ, мероприятий текущей аттестации и отводимое на них аудиторное время (занятия в соответствии с расписанием) и самостоятельную работу. При формировании личного образовательного плана на семестр следует оценивать рекомендуемое время на изучение дисциплины, возможно, вам потребует больше времени на выполнение отдельных заданий или проработку отдельных тем.

В разделе «Содержание дисциплины» приведены подробные сведения об изучаемых вопросах, по которым вы можете ориентироваться в случае пропуска каких-то занятий, а также методические рекомендации преподавателя для самостоятельной подготовки, каждая тема имеет ссылки на литературу (или иные информационные ресурсы), а также контрольные вопросы для самопроверки.

Раздел «Требования к аттестации по дисциплине» содержит описание обязательных мероприятий контроля самостоятельной работы и усвоения разделов или отдельных тем дисциплины. Далее изложены требования к завершающей аттестации — зачету.

Помимо данного пособия, студентам следует использовать материалы, размещенные в соответствующем данной дисциплине разделу ЭИОС, в которые более оперативно вносятся изменения для адаптации дисциплины под конкретную группу.

2 Тематический план

Общая трудоемкость дисциплины составляет 3 зачетные единицы (ЗЕТ), т.е. 108 академических часов контактной практических, лабораторных занятий и самостоятельной учебной работы студента, в т.ч. связанной с текущей и промежуточной (заключительной) аттестацией по дисциплине.

Распределение трудоемкости освоения дисциплины по семестрам OП, темам и видам учебной работы студента приведено ниже.

Формы аттестации по дисциплине:

- очная форма, восьмой семестр зачет;
- заочная форма, девятый семестр контрольная работа, зачет;

Таблица 1 - Объем (трудоёмкость освоения) в очной форме обучения и структура дисциплины

	Объем учебной работ			аботы	по ее видам (час)	
Номер и наименование темы,	Контакт. работа				CPC	всего
вид учебной работы	ЛК	ЛЗ	П3	РЭ		
1. Введение. Общие сведения о SCADA – системах.	-	-	2	-	2	4
2. Интерфейс и среда разработки Master SCADA.	-	-	2	2	6	10
3. Редактор мнемосхем Master SCADA.	-	4	4	4	10	22
4 Построение дерева системы и дерева объектов.	-	4	4	2	20	30
5. Переменные и функциональные блоки.	-	2	4	2	14	22
6. Технология ОРС в среде Master SCADA.	-	2	4	2	11,85	19,85
Учебные занятия	-	12	20	12	63,85	107,85
Аттестация	Зачет			0,15		
Итого по дисциплине						108

ЛЗ - лабораторные занятия, РЭ — контактная работа посредством электронной информационно-образовательной среды (ЭИОС), СРС — самостоятельная работа студентов.

Таблица 2 - Объем (трудоёмкость освоения) по заочной форме обучения и структура дисциплины

	Объем учебной работы по ее видам (час)					
Номер и наименование темы,	Контакт. работа			CPC	всего	
вид учебной работы	ЛК	ЛЗ	ПЗ	РЭ		
1. Введение. Общие сведения о SCADA – системах	-	-	-	-	2	2
2. Интерфейс и среда разработки Master SCADA	-	-	-	-	8	8

3. Редактор мнемосхем Master SCADA	-	-	2	1	16	19
4 Построение дерева системы и дерева объектов	-	1	2	2	24	29
5. Переменные и функциональные блоки	-	1	1	1	30	33
6. Технология ОРС в среде Master SCADA	-	-	1	-	11,5	12,5
Учебные занятия	-	2	6	4	91,5	103,5
Аттестация	Зачет		4,5			
Итого по дисциплине						108

3 Содержание дисциплины

Содержательно структура дисциплины представлена шестью темами.

Тема 1. Введение. Общие сведения о SCADA – системах.

Цель и задачи изучения дисциплины. Роль SCADA – систем в проектах АСУТП. Планируемые результаты освоения дисциплины.

Рекомендуемая литература: [1], гл. 1, 2; [2], гл. 1.

Контрольные вопросы:

- 1. Что такое SCADA система?
- 2. Основные задачи SCADA систем.
- 3. Виды иерархии. SCADA систем.
- 4. Производители и виды SCADA систем

Тема 2. Интерфейс и среда разработки Master SCADA.

Установка и запуск Master SCADA. Менеджер проектов. Справочная система. Палитра функциональных блоков.

Рекомендуемая литература: [1], гл. 2; [3], гл. 2.

Контрольные вопросы:

- 1. Создание проекта, установка пароля.
- 2. Назначение и состав навигатора.
- 3. Контекстное меню проекта.
- 4. Сообшения об ошибках

Tema 3. Редактор мнемосхем Master SCADA.

Содержание мнемосхем Библиотеки стандартных элементов. Редактор создания мультфильмов. Способы отображения переменных. Добавление и динамизация элементов.

Рекомендуемая литература: [1], гл. 3, 4; [2], гл. 42, [3], гл. 1-3.

Контрольные вопросы:

- 1. Мнемосхема и ее назначение.
- 2. Элемент мнемосхемы.
- 3. Динамизация элементов.
- 4. Переменные и их отображение на мнемосхеме.

Тема 4. Построение дерева системы и дерева объектов.

Состав дерева системы. Дерево объектов — иерархия структуры проекта. Объект - основная единица разрабатываемой системы. Документы проекта.

Рекомендуемая литература: [1], гл. 3, 4, [4], гл. 2.

Контрольные вопросы:

- 1. Содержание дереве системы.
- 2. Наследование и тиражирование.
- 3. ОРС сервер содержится в
- 4. Что такое значение, событие, расчет?

Тема 5. Переменные и функциональные блоки.

Типы переменных. Категории «Обработка сигналов» и «Вычисления». Исполнительные механизмы. Датчики и аппараты. Циклограмма, регулятор, задатчик.

Контрольные вопросы:

- 1. Атрибуты переменных ввода.
- 2. Категория «Вычисление» и обработка строк..
- 3. Двухпозиционный исполнительный механизм.
- 4. Отраслевые библиотеки.

Тема 6. Технология ОРС в среде Master SCADA.

Понятия «OPC – сервер», «OPC – технология». Быстродействие работы с «OPC – сервером». OPC DA и OPC HDA – серверы. Журналы сообщений. Схема связи через OPC – сервер.

Рекомендуемая литература: [5], гл. 2, [2], гл. 4.

Контрольные вопросы:

- 1. Что такое ОРС сервер.
- 2. Чем отличаются OPC DA и OPC HDA серверы .
- 3. Общие параметры ОРС.

4. Объект в Master SCADA это...

4 Методические указания по проведению практических занятий

По дисциплине предусматривается проведение практических занятий. Содержание практических занятий и количество их часов определены в нижерасположенной таблице для очной и заочной форм обучения.

Таблица 3 - Объем (трудоёмкость освоения) и структура ПЗ

Номер	Содержание (семинарского)	Кол-во часов П	3
темы	практического занятия	Очная	Заочная
		форма	форма
1	1. Введение. Общие сведения о SCADA –	2	_
1	системах	2	_
2	2. Интерфейс и среда разработки Master SCADA	2	-
3	3. Редактор мнемосхем Master SCADA	4	2
4	4 Построение дерева системы и дерева объектов	4	2
5	5. Переменные и функциональные блоки	4	1
6	6. Технология OPC в среде Master SCADA	4	1
	Итого	20	6

ПЗ – практическое занятие

Практические занятия проводятся в компьютерном классе кафедры цифровых систем и автоматики, оснащенным персональными компьютерами с программным обеспечением - интегрированная среда разработки — программа Master SCADA (распространяется бесплатно фирмой ИнСАТ). где по заданию преподавателя студент решает задачи разработки проектов автоматизированных рабочих мест. Контроль по практическим занятиям проводится на компьютере, а также по ответам на контрольные вопросы

5. Методические указания по проведению лабораторных занятий

Особое место в структуре дисциплины занимает практикум, включающий в себя 76 лабораторных работ.

Таблица 4 - Объем (трудоёмкость освоения) и структура ЛЗ

Номер ЛР	Номер темы	Содержание лабораторного занятия	Очная форма, ч	Заочная форма, ч
1	2	Подключение и интерфейс Master SCADA	2	-
2	4	Создание дерева системы. Подключение OPC - сервера	2	1
3	4	Разработка дерева объекта наполнительного бака	2	1
4	3	Мнемосхемы простого объекта управления	2	-
5	5	Использование функциональных блоков исполнительных устройств	2	-
6	6	Работа с программным имитатором ОРС DA – сервера	2	-
		Всего	12	2

Лабораторный практикум проводятся в компьютерном классе кафедры цифровых систем и автоматики, оснащенным персональными компьютерами с программным обеспечением — инструментальная среда разработки — Master SCADA (распространяется бесплатно фирмой Инсат), OPC Server Simulator, MasterOPC Universal Modbus Server. Студент в ходе лабораторного практикума согласно методическим указаниям и заданию преподавателя проекты выполняет лабораторные работы. Защита лабораторной работы проводится при условии наличия отчета и работоспособных схем на компьютере путем ответа на вопросы преподавателя.

6 Методические указания по выполнению самостоятельной работы

Самостоятельная работа студентов по дисциплине, а также работа в ЭИОС университета может проводиться в том числе в компьютерном классе (лаб. 143а, главный учебный корпус), оснащенном персональными компьютерами с выходом в сеть Интернет.

Таблица 5 - Объем (трудоёмкость освоения) и формы СРС

		Кол-во	часов	Форма
№	Вид (содержание) СРС	очная	заочная	контроля,
		форма	форма	аттестации
1	Освоение теоретического учебного материала (в т.ч. подготовка к лабораторным занятиям)	63,85	70,5	Текущий контроль: • контроль на ПЗ; • защита лабораторных работ
2	Контрольная работа	-	12	Текущий контроль: -защита контрольной работы
	Итого	63,85	91,5	

Контрольная работа, выполняемая при заочной форме обучения, предусматривает рассмотрение вопросов, относящихся к заданной преподавателем теме дисциплины и ее разделов.

7. Методические указания по проведению занятий и освоению дисциплины

При разработке образовательной технологии организации учебного процесса по изучению дисциплины основной упор сделан на соединение активной и интерактивной форм обучения. Интерактивная форма позволяет студентам проявить самостоятельность в освоении теоретического материала и овладении практическими навыками, формирует интерес и позитивную мотивацию к учебе.

ходе изучения дисциплины внимание студентов постоянно акцентируется не только на теоретическом аспекте проектирования объектов и систем автоматизации технологических процессов и производств, но и их высокотехнологичных практическом применении современных Для производствах. успешного освоения дисциплины необходимо ознакомиться с базовыми понятиями об объектах и системах автоматизации технологических процессов и производств.

На практических занятиях изложению нового материала предшествуют обсуждение предыдущей темы с целью восстановления и закрепления студентами изученного теоретического и практического материала и ответы на

вопросы студентов. В конце практического занятия выделяется время для ответов на вопросы по текущему материалу и его обсуждению. Активность студентов и проявленные знания при обсуждении материала учитываются при текущей и промежуточной (заключительной) аттестации по дисциплине. В конце практического занятия выделяется время для ответов на вопросы по материалу и его обсуждению. Для закрепления определения «пробелов» в знаниях студентов материала, на лекциях проводится контроль (устный опрос). Активность студентов и проявленные знания при обсуждении материала и устном опросе учитываются при текущей и промежуточной (заключительной) аттестации по дисциплине.

Самостоятельная работа студентов призвана закрепить теоретические знания и практические навыки, полученные студентами на лекциях, в ходе лабораторных занятий и проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
 - углубления и расширения теоретических знаний;
 - формирования умений использовать специальную литературу.

8. Требования к аттестации по дисциплине

8.1 Текущая аттестация

Текущая аттестация (текущий контроль) проводится с целью оценки освоения теоретического учебного материала, в том числе в рамках самостоятельной работы студента (п. 6).

Контроль на практических занятиях по отдельным темам используются для оценки освоения тем дисциплины. Контроль производится в виде устного опроса.

Типовые контрольные вопросы для устного опроса на практических занятиях по отдельным темам:

1. Общие сведения о SCADA – системах.

- 1. Что такое SCADA системы?
- 2. Основные задачи SCADA системы.
- 3. Мониторинг и управление. Отличия.
- 4. Уровни АСУТП.

Тема 2. Интерфейс и среда разработки Master SCADA.

- 1. Как определить место сохранения проектов?.
- 2. Для чего необходимы библиотеки?
- 3. Как установить права доступа?
- 4. Палитра Master SCADA.

Тема 3. Редактор мнемосхем Master SCADA.

- 1. Что такое мнемосхемы в Master SCADA.
- 2. Что такое тренд и как его настроить?
- 3. Гистограммы и диаграммы.
- 4. Что такое встроенная мнемосхема?

Тема 4. Построение дерева системы и дерева объектов.

- 1. Что содержит дерево системы?
- 2. Где находятся ОРС- сервера проекта?.
- 3. Что такое элемент Модуль ввода-вывода? .
- 4. Иерархия проекта в дереве системы.

Тема 5. Переменные и функциональные блоки.

- 1. Типы переменных в Master SCADA.
- 2. Как устанавливается связь переменных с функциональными блоками?
 - 3. Настройка объемных объектов.
 - 4. Назовите виды функциональных блоков в Master SCADA.

Тема 6. Технология ОРС в среде Master SCADA.

- 1. Расшифруйте термин ОРС.
- 2. Функции ОРС сервера.
- 3. OPC DA и OPC DA серверы. Отличия.
- 4. Как связать переменные Объекта с ОРС переменными?

Положительная оценка («зачтено») по результатам каждого контроля (опроса) выставляется в соответствии с универсальной системой оценивания, приведенной в табл. 7. В случае получения оценки «не зачтено» студент должен пройти повторный контроль по данной теме в ходе последующих консультаций.

Текущий контроль в виде защиты лабораторных работ проводится на лабораторном практикуме, целью которого является формирование умений и навыков по программированию микроконтроллеров. Защита лабораторной работы проводится на основании отчета и представления ее результатов на компьютере, а также ответа на контрольные вопросы к лабораторным работам. Студент, самостоятельно выполнивший задание, продемонстрировавший знание использованных им программных средств получает по лабораторной работе оценку «зачтено».

С целью контроля качества самостоятельной работы студентов заочной формы запланировано выполнение контрольной работы. Система оценивания и критерии оценки контрольной работы приведены в табл. 6.

Таблица 6 - Система оценивания критерии оценки контрольной работы

Система	2	3	4	5
оценок	«неудовлетво	«удовлетво-	«хорошо»	«отлично»
	рительно»	рительно»	(/DQ1/TQ1/Q))	
Критерий	«не зачтено»		«зачтено»	
1 Работа с	Не в	Может найти	Может найти,	Может
информа-	состоянии	необходимую	интерпретирова	найти,
цией	находить	информацию	ть и	систематиз
	необходимую	в рамках	систематизиров	ировать
	информацию,	поставленно	ать	необходим
	либо в	й задачи	необходимую	ую
	состоянии		информацию в	информац
	находить		рамках	ию, а
	отдельные		поставленной	также
	фрагменты		задачи	выявить
	информации в			новые,
	рамках			дополните
	поставленной			льные
	задачи			источники
				информац
				ии в
				рамках
				поставлен
	**			ной задачи
2 Научное		В состоянии	В состоянии	В
осмысление	делать научно	осуществ-	осуществлять	состоянии
изучаемого	корректных	лять научно	систематически	осуществ-
явления,	выводов из	корректный	й и научно	ЛЯТЬ
процесса,	имеющихся у	анализ	корректный	системати
объекта	него сведений,	предоставлен	анализ	ческий и
	В СОСТОЯНИИ	ной	предоставленно	научно-
	проанализиро	информации	й информации,	коррект-
	вать только		вовлекает в	ный
	некоторые из		исследование	анализ
	имеющихся у		новые	предостав- ленной
	него сведений		релевантные	информа-
			задаче данные	
				ции,

Система	2	3	4	5
оценок	«неудовлетво рительно»	«удовлетво- рительно»	«хорошо»	«отлично»
Критерий	«не зачтено»			
				вовлекает
				В
				исследова-
				ние новые
				релеван-
				тные
				поставлен-
				ной задаче
				данные,
				предлагает
				новые
				ракурсы
				поставлен
				ной задачи
3 Освоение	В состоянии	В состоянии	В состоянии	Не только
стандартны	решать только	решать	решать	владеет
X	фрагменты	поставленны	поставленные	алгорит-
алгоритмов	поставленной	е задачи в	задачи в	мом и
решения	задачи в	соответствии	соответствии с	понимает
профессио-	соответствии	с заданным	заданным	его
нальных	с заданным	алгоритмом	алгоритмом,	основы, но
задач	алгоритмом,		понимает	И
	не освоил		основы	предлагает
	предложенны		предложенного	новые
	й алгоритм,		алгоритма	решения в
	допускает			рамках
	ошибки			поставлен
				ной задачи

8.2 Промежуточная аттестация по дисциплине

Промежуточная (заключительная) аттестация по дисциплине проводится в форме зачета. Оценка «зачет» выставляется студентам:

- выполнившим и защитившим все лабораторные работы, предусмотренные данным положением (получившим положительную оценку по результатам лабораторного практикума);

- имеющим положительную оценку («зачтено») по результатам устного опроса;
 - регулярно посещавшим практические занятия;
- выполнившим контрольную работу (получившим оценку «зачтено» по контрольной работе) для студентов заочной формы.

В случае отсутствия более чем 30% практических занятий для получения оценки «зачтено» студент должен ответить на один из контрольных вопросов по дисциплине или успешно пройти тестирование (табл. 6).

Таблица 7 — Система оценок и критерии выставления оценки при прохождении тестирования или ответа на контрольные вопросы

	П	роцент правилі	ьных ответов	
Система	0-40%	41-60%	61-80 %	81-100 %
оценок	«не зачтено»		«зачтено»	
Критерий				
1 Систем-	Обладает	Обладает	Обладает	Обладает
ность и	частичными и	минимальным	набором	полнотой
полнота	разрозненными	набором	знаний,	знаний и
знаний в	знаниями,	знаний,	достаточным	системным
отношении	которые не	необходимым	для	взглядом на
изучаемых	может научно-	для	системного	изучаемый
объектов	корректно	системного	взгляда на	объект
	связывать	взгляда на	изучаемый	
	между собой	изучаемый	объект	
	(только	объект		
	некоторые из			
	которых может			
	связывать			
	между собой)			
2 Освоение	В состоянии	В состоянии	В состоянии	Не только
стандартны	решать только	решать	решать	владеет
X	фрагменты	поставленные	поставленны	алгоритмом
алгоритмов	поставленной	задачи в	е задачи в	и понимает
решения	задачи в	соответствии	соответствии	его основы,
профессио-	соответствии с	с заданным	с заданным	но и
нальных	заданным	алгоритмом	алгоритмом,	предлагает
задач	алгоритмом, не		понимает	новые
	освоил		основы	решения в
	предложенный		предложенно	рамках
	алгоритм,		го алгоритма	поставленно
	допускает			й задачи

	П	Гроцент правильных ответов					
Система	0-40%	41-60% 61-80 % 81-100 %					
оценок	«не зачтено»	«зачтено»					
Критерий							
	ошибки						

Перечень вопросов к зачету:

- 1. Назначение SCADA систем.
- 2. Концепция и архитектура Master SCADA.
- 3. Интерфейс и среда разработки Master SCADA.
- 4. Редактор мнемосхем Master SCADA.
- 5. Дерево системы Master SCADA.
- 6. Дерево объекта .Master SCADA
- 7. Свойства элементов палитры Master SCADA.
- 8. Инструментальная среда разработки Master SCADA.
- 9. Переменные объектов Master SCADA.
- 10. Функциональные блоки проекта.
- 11. Тренды Master SCADA.
- 12. Команды и их использование.
- 13. Объекты в Master SCADA.
- 14. «Значения» и их применение
- 15. ActiveX элементы и их использование в мнемосхемах.
- 16. Динамизация элементов мнемосхем.
- 17. Окна программы и их состав.
- 18. Добавление элементов из дерева объектов на мнемосхему.
- 19. Визуальные функциональные блоки (ВФБ).
- 20. Функциональные блоки мнемосхем Master SCADA.
- 21. Объектно-ориентированный метод разработки проектов.
- 22. Построение дерева системы и дерева объектов.
- 23. Отчеты и журналы проекта.
- 24. События и расчеты проекта Master SCADA.
- 25. Конфигурирование РІС-контроллера.
- 26. Категории «Исполнительные механизмы» и «Датчики».
- 27. Понятия «ОРС-сервер», «ОРС-технология.
- 28. Добавление ОРС-сервера.
- 29. Настройки опроса и подключения в ОРС сервере.
- 30. Настройка «Максимальное количество тегов в запросе чтение архивов.

9 Заключение

Освоение дисциплины ««Программирование микропроцессорных систем» является одним из основополагающих шагов к формированию будущего специалиста в области автоматизации технологических процессов и производств. Приобретенные в ходе изучения дисциплины знания, умения и навыки будут углубляться и совершенствоваться в процессе дальнейшего обучения и могут быть применены в профессиональной деятельности.

10 Библиографический список Основная литература:

- 1. ИнСАТ «Master SCADA. Руководство пользователя. Версия 3.X.», Москва, 2017 574 с.
- 2. Третьяков, А.Н. Интегрированные системы проектирования и управления: SCADA системы: учеб. пособие. / А.Н. Третьяков, А.Н. Пчелинцев [и др.]. Тамбов, 2015, -160 с.
- 3. ИнСАТ «Master SCADA Основы проектирования. Методическое пособие», Москва, 2016 277 с.
- 4. Газиева, Р.Т. Master SCADA, учебное пособие для студентов специальности 5311000— Автоматизация и управление технологических процессов / Р.Т. Газиева, Д.Б. Ядгарова [и др.]. . Ташкент, 2020, 105 с.

Дополнительная литература:

- 5. ИнСАТ «Master SCADA. Связь с нижним уровнем.», Москва, 2015 48 с.
- 6. ИнСАТ «Master SCADA. Вычисления в Master SCADA.», Москва, 2016 57 с.

Учебно-методические пособия:

7. Создание собственных протоколов в Modbus Universal MasterOPC Server.

https://insat.ru/products/?category=2111

8. Инструкция по подключению контроллеров OBEH серии ПЛК1хх. https://insat.ru/products/?category=2111

Интернет-ресурсы:

Ссылки на журналы в области проектирования объектов и систем автоматизации:

- 9. Современные технологии автоматизации http://www.cta.ru/
- 10. Портал «Мир компьютерной автоматизации» http://www.mka.ru/
- 11. Автоматизация в промышленности http://www.avtprom.ru/
- 12 . Многоканальные системы сбора данных. ОРС-сервер Л Кард. Описание программного обеспечения. Москва, 2018,- 104 с. https://docs.yandex.ru/docs/view?tm=1670167307&tld=ru&lang=ru&name=lcard-

Локальный электронный методический материал

Евгений Петрович Шамаев

ПРОГРАММИРОВАНИЕ МИКРОПРОЦЕССОРНЫХ СИСТЕМ

Редактор Г. А. Смирнова

Уч.-изд. л. 1,25. Печ. л. 1,25

Издательство федерального государственного бюджетного образовательного учреждения высшего образования «Калининградский государственный технический университет». 236022, Калининград, Советский проспект, 1