Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Е. П. Шамаев

Разработка программного обеспечения систем автоматизации и управления технологическими процессами и Практикум по разработке программного обеспечения систем автоматизации и управления технологическими процессами

Учебно-методическое пособие по изучению модуля дисциплин бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств

Калининград Издательство ФГБОУ ВО «КГТУ» 2022

Рецензент:

кандидат технических наук, и. о. заведующего кафедрой цифровых систем и автоматизации института цифровых технологий ФГБОУ ВО «Калининградский государственный технический университет» В.И. Устич

Шамаев, Е. П.

программного обеспечения Разработка систем автоматизации управления технологическими процессами и Практикум по разработке программного обеспечения систем автоматизации И управления технологическими процессами: учеб.-метод. пособие по изучению модуля дисциплин для студентов бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств / Е. П. Шамаев. – Калининград: Изд-во ФГБОУ ВО «КГТУ», 2022. – 23 с.

В учебно-методическом пособии приведен тематический план по дисциплине и даны методические указания по её самостоятельному изучению, подготовке к лабораторным занятиям, подготовке и сдаче зачета и экзамена, выполнению курсовой работы.

Пособие подготовлено в соответствии с требованиями утвержденной рабочей программы профессиональному модулю (В) образовательной программы бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств.

Учебно-методическое пособие рассмотрено и одобрено в качестве локального электронного методического материала кафедрой цифровых систем и автоматизации 28 сентября 2022 г., протокол № 2

Учебно-методическое пособие по изучению дисциплины рекомендовано к использованию в качестве локального электронного методического материала в учебном процессе методической комиссией института цифровых технологий ФГБОУ ВО «Калининградский государственный технический университет» 06 декабря 2022 г., протокол № 10

- © Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2022 г.
- © Шамаев Е. П., 2022 г.

ОГЛАВЛЕНИЕ

1.	Введение
2.	Тематический план6
3.	Содержание дисциплины
4.	Методические указания по проведению лабораторных занятий13
5.	Методические указания по проведению практических занятий14
6.	Методические указания по выполнение самостоятельной работы16
7.	Методические указания по проведению и освоению дисциплины17
8.	Требования к аттестации по дисциплине
8.1.	Текущая аттестация
8.2.	Промежуточная аттестация по дисциплине
9.	Заключение
10.	Библиографический список

1 Введение

Данное учебно-методическое пособие предназначено для студентов направления подготовки 15.03.04 Автоматизация технологических процессов и производств, изучающих дисциплины модуля «Разработка программного обеспечения систем автоматизации и управления технологическими процессами (РПОСАиУТП)».

Целью освоения является формирование знаний и навыков по теоретическим и практическим основам и методам проектирования встроенных систем автоматического (автоматизированного) регулирования и управления на базе микроконтроллеров.

Задачи изучения дисциплин модуля:

- освоение принципов построения архитектур встроенных систем управления, способов алгоритмизации и программирования на машинном языке и языках высокого уровня;
- знание принципов построения современных микроконтроллерных систем управления и их программного обеспечения;
- приобретение практических навыков по разработке принципиальных электрических схем современных микроконтроллерных систем, разработке и отладке программного обеспечения.

В результате изучения дисциплины студент должен:

знать:

- основные принципы организации и архитектуру встроенных систем, сетей;
- принципы организации функциональных и интерфейсных связей вычислительных систем с объектами автоматизации;
- основные современные информационные технологии передачи и обработки данных, основы построения, управляющих локальных и глобальных сетей; синтаксис и семантику алгоритмического языка программирования;
 - принципы и методологию построения алгоритмов программных систем;

уметь:

- пользоваться инструментальными программными средствами инструментальных графических систем, актуальных для современного производства;
 - выбирать средства для проектирования систем автоматизации управления;
 - программировать и отлаживать системы на базе микроконтроллеров;
- работать с каким-либо из основных типов программных систем, предназначенных для математического и имитационного моделирования;

владеть:

- навыками работы на компьютерной технике с графическими пакетами для получения конструкторских, технологических, и других документов;

- навыками работы с вычислительной техникой, передачей информации в среде локальных сетей Интернета;
- навыками проектирования простых программных алгоритмов и реализации их на языке программирования;
- навыками по разработке схем, написанию и отладке программ управления технологическими процессами.

В состав модуля «Разработка программного обеспечения систем автоматизации и управления технологическими процессами» входят дисциплина «Разработка программного обеспечения систем автоматизации и управления технологическими процессами» и «Практикум по разработке программного обеспечения систем автоматизации и управления технологическими процессами», относящиеся к профессиональному модулю (В) образовательной программы бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств.

Освоение модуля базируется на дисциплинах «Электроника», «Теория автоматического управления», «Дискретная математика».

Знания, полученные студентами при освоении дисциплины, дополняются, расширяются, углубляются при изучении ряда дисциплин профессионального цикла в 7- и 8-м семестрах, используются при написании выпускной квалификационной работы и в практической профессиональной деятельности.

Далее в пособии представлен тематический план, содержащий перечень изучаемых тем, выполняемых лабораторных работ, мероприятий текущей аттестации и отводимое на них аудиторное время (занятия в соответствии с расписанием) и самостоятельную работу. При формировании личного образовательного плана на семестр следует оценивать рекомендуемое время на изучение дисциплины, возможно, вам потребует больше времени на выполнение отдельных заданий или проработку отдельных тем.

В разделе «Содержание дисциплины» приведены подробные сведения об изучаемых вопросах, по которым вы можете ориентироваться в случае пропуска каких-то занятий, а также методические рекомендации преподавателя для самостоятельной подготовки, каждая тема имеет ссылки на литературу (или иные информационные ресурсы), а также контрольные вопросы для самопроверки.

Раздел «Требования к аттестации по дисциплине» содержит описание обязательных мероприятий контроля самостоятельной работы и усвоения разделов или отдельных тем дисциплины. Далее изложены требования к завершающей аттестации –зачету, курсовой работе, экзамену.

Помимо данного пособия, студентам следует использовать материалы, размещенные в соответствующем данной дисциплине разделу ЭИОС, в которые более оперативно вносятся изменения для адаптации дисциплины под конкретную группу.

2 ТЕМАТИЧЕСКИЙ ПЛАН

Модуль, состоящий из двух дисциплин, изучается в шестом семестре ООП. Общая трудоемкость дисциплины «Разработка программного обеспечения систем автоматизации и управления технологическими процессами» (РПОСАУТП) –3 зачетных единицы, т.е.108 академических часов. В том числе: аудиторные занятия (АЗ) включая лекции (ЛК), лабораторные работы (ЛР); самостоятельная работа студента (СРС) – 76 ч, включая подготовку к экзамену – 39 ч.

Аттестация по дисциплине проводится в форме курсовой работы и экзамена.

Общая трудоемкость дисциплины «Практикум по разработке программного обеспечения систем автоматизации и управления технологическими процессами» -3 зачетных единицы, т.е. 108 академических часов. В том числе: аудиторные занятия (A3)., включая практические занятия (П3), лабораторные работы (ЛР); самостоятельная работа студента (СРС) -59,85 ч, включая подготовку к зачету -0,15 ч.

Распределение трудоемкости освоения модуля дисциплин по семестрам ОП, темам и видам учебной работы студента приведено ниже в таблицах 1-4.

Формы аттестации по дисциплине «РПОСАУТП» для очной и заочной формы: шестой семестр – курсовая работа, экзамен.

Формы аттестации по дисциплине «Практикум по РПОСАУТП» для очной и заочной формы: шестой семестр – зачет.

Таблица 1- Объем (трудоёмкость освоения) в *очной форме* обучения и структура дисциплины **РПОСАУТП**

	Объем учебной				работы, ч	
Номер и наименование	K	Сонтакт	ная раб	ота		
темы, вид учебной работы	Лекци	ЛЗ	ПЗ	РЭ	CPC	Всего
	И	J13		13		
Семестр – 5, трудоемко	сть – 3 ЗЕ	ET (108 ¤	н)			
1. Введение.						
Представление информации в	1					1
микропроцессорах						
2. Архитектура и синхронизация	1					1
микропроцессоров	1					1
3. Система команд микропроцессора	2			2	2	8
3. Система команд микропроцессора	2	2				O
4. Память и внешнее устройство	1				1	4
микропроцессорных систем	1	2			1	4

	Объем учебной работ					і, ч
Номер и наименование	I	Сонтак	тная ра	бота		
темы, вид учебной работы	Лекци	ЛЗ	ПЗ	РЭ	CPC	Всего
	И	313		13		
5. Микроконтроллеры в локальных						
системах управления. 8-, 16- и 32-	1	2			1	4
разрядные микроконтроллеры.		2				
6.Языки программирования						
микроконтроллеров. Язык	4	4			3	11
C-51		4				
7.Среда программирования	4				4	14
микроконтроллеров Keil uVision.	1	6			4	14
Курсовая работа					26	26
Учебные занятия	14	16			37	69
Промежуточная аттестация	экзамен					39
Итого по дисциплине				108		

Таблица 2- Объем (трудоёмкость освоения) в *очной форме* обучения и структура дисциплины **Практикум по РПОСАУТП**

дисциплины практикум по РПОСАУ	Объем учебной работы, ч						
Номер и наименование темы, вид учебной работы		Контак					
		лз	ПЗ	РЭ	СРС	Всего	
Семестр – 5, трудоемко	$_{\rm CTb} - 33$	BET (108	час.)				
1. Введение. Представление информации в микропроцессорах		1	4		4	8	
2. Архитектура и синхронизация микропроцессоров		1	4	-	4	8	
3. Система команд микропроцессора		2	4	2	6	14	
4. Память и внешнее устройство микропроцессорных систем		2	4		4	10	
5. Микроконтроллеры в локальных системах управления. 8-, 16- и 32 разрядные микроконтроллеры.		2	4		6	13	
6. Языки программирования микроконтроллеров. Язык C-51.		2	6		22	30	
7. Среда программирования микроконтроллеров Keil uVision.		6	4		13,85	23,85	
Учебные занятия		16	30	2	59,85	107,85	
Промежуточная аттестация	зачет				0,15		
Итого по дисциплине					108		

Таблица 3 - Объем (трудоёмкость освоения) в *заочной форме* обучения и структура дисциплины **РПОСАУТП**

Anedmisimist 1100110 111	Объем учебной работы, ч					і, ч
Номер и наименование темы, вид	Контактная работа					
учебной работы	Лекц	и дз	П3	пз РЭ	CPC	Всего
	И					
Семестр – 5, трудоемкос	сть — 3	3ET (108)	ч)			ı
1. Введение.						
Представление информации в	1				8	9
микропроцессорах						
2. Архитектура и синхронизация					8	9
микропроцессоров		1			0	
3. Система команд микропроцессора	_	1		2	8	11
		1				
4. Память и внешнее устройство					8	9
микропроцессорных систем		1				
5. Микроконтроллеры в локальных						1.0
системах управления. 8-, 16- и 32	1	1			8	10
разрядные микроконтроллеры						
6.Языки программирования						1.0
микроконтроллеров. Язык	1	1		8	8	10
C-51						
7.Среда программирования	1				10	12
микроконтроллеров Keil uVision.	•	1				
Курсовая работа					26	26
Учебные занятия	4	6		2	84	96
Промежуточная аттестация	экзамен				12	
Итого по дисциплине						108

Таблица 4 - Объем (трудоёмкость освоения) в *заочной форме* обучения и структура дисциплины **Практикум по РПОСАУТП**

		Объем учебной работы, ч				
Номер и наименование темы, вид	Контактная работа					
учебной работы	Лекци и	лз	ПЗ	РЭ	CPC	Всего
Семестр – 5, трудоемко	сть – 3 ЗЕ	ET (108 ¹	нас.)			
1. Введение. Представление информации в микропроцессорах	-	1		-	4	4
2. Архитектура и синхронизация микропроцессоров	-	1-		-	8	8
3. Система команд микропроцессора	-	12		2	8	12
4. Память и внешнее устройство микропроцессорных систем	-	1-			8	8
5. Микроконтроллеры в локальных системах управления. 8-, 16- и 32 разрядные микроконтроллеры.	_	1-			8	8

		Объем учебной работь				
Номер и наименование темы, вид		Контак	тная ра			
учебной работы		и лз	ПЗ	еч	CPC	Всего
6. Языки программирования микроконтроллеров. Язык C-51.	-	12	2		16	20
7. Среда программирования микроконтроллеров Keil uVision.	-	12	2		13,5	17,5
Контрольная работа					26	26
Учебные занятия		6	4	2	91,5	103,5
Промежуточная аттестация		зачет				
Итого по дисциплине		•		•		108

3 Содержание дисциплины

Содержательно структура дисциплины представлена тремя тематическими разделам.

Тема 1. Представление информации в микропроцессорах

Перечень изучаемых вопросов:

Предмет и содержание дисциплины, связь с другими курсами. История развития микропроцессоров. Роль микропроцессоров в системах управления. Основные понятия и терминология. Классификация микропроцессоров (МП).

Кодирование информации. Двоичные и шестнадцатеричные числа. Двоичная арифметика. Кодирование чисел, букв и символов. Основные сведения из алгебры логики.

Рекомендуемая литература: [1], гл. 1, 2; [2], гл. 2, [5], гл. 3.

Контрольные вопросы:

- 1. Что такое разрядность машинного слова?
- 2. Где хранится информация в микропроцессоре?
- 3. Что такое мнемокод?
- 4. Длина адреса внешнего устройства.

Тема 2. Архитектура и синхронизация микропроцессоров

Функциональная схема управляющего микропроцессорного контроллера. Обобщенная схема микропроцессора, особенности архитектуры основных типов МП. Функциональная схема восьмиразрядного микропроцессора на примере I 8080.

Назначение выводов и внутренних регистров. Мультиплексная шина адреса - данных на примере I 8085. Понятия машинного такта, цикла, командного цикла. Генератор синхроимпульсов. Слово состояния МП, схема и диаграмма его записи. Организация магистралей МП. Виды машинных циклов. Схемы и диаграммы работы МП в различных циклах и режимах.

Рекомендуемая литература: [1], гл. 1, 2; [2], гл. 2, [5], гл. 3.

Контрольные вопросы:

- 1. Какие устройства как минимум необходимы микропроцессору?
- 2. Что такое мультиплексная шина?
- 3. Какие магистрали есть в микропроцессоре? Их назначение.
- 4. Какой цикл следует после выполнения очередной команды?

Тема 3. Система команд микропроцессора

Микропроцессоры с микропрограммным управлением и с фиксированной системой команд. Система команд I 8080. Виды адресации. Группы команд: пересылок, математических операций, передачи управления, ввода-вывода, управления процессором. Основные сведения об языке ассемблера I 8080. Листинг программирования. Особенности команд других типов МП.

Рекомендуемая литература: [1], гл. 1, 2; [2], гл. 2, [5], гл. 3.

Контрольные вопросы:

- 1. Какие виды адресации Вы знаете?
- 2. Меняют ли содержимое регистра признаков команды пересылок?
- 3. Что такое мнемокод?
- 4. Обязательны ли в листинге комментарии?

Тема 4. Память и внешнее устройство микропроцессорных систем

Внешняя и внутренняя память МП. Виды и устройство постоянных запоминающих устройств. Схемотехника статических и динамических оперативных запоминающих устройств. Ячейки и модули памяти. Мультиплексные (адрес, данные, управление) выводы модулей памяти. Дешифраторы адресов и схемы подключения памяти к магистралям.

Рекомендуемая литература: [1], гл. 1, 2; [2], гл. 2, [5], гл. 3.

Контрольные вопросы:

- 1. Что такое СОЗУ?
- 2. Где хранится информация в динамических ОЗУ?
- 3. Чем внешнее устройство отличается от памяти?
- 4. Кто формирует адреса?

Тема 5. Микроконтроллеры в локальных системах управления. 8-, 16- и 32разрядные микроконтроллеры

Понятие микроконтроллера. RISC и CISC - архитектуры микроконтроллеров. Аппаратный состав микроконтроллеров. Функциональные схемы 8-ми, 16-ти, и 32-х разрядных микроконтроллеров фирм PIC, ATMEL, ARM7.

Рекомендуемая литература: [3], гл. 2, 3.

Контрольные вопросы:

- 1. По какой архитектуре. RISC или CISC строится большинство микроконтроллеров?
- 2. Как осуществляется дискретный ввод-вывод информации в микроконтроллере Lpc2148?
 - 3. Для чего нужен Watchdog таймер?

Тема 6. Языки программирования микроконтроллеров. Язык С-51

Перечень изучаемых вопросов:

Программирование на машинных языках и языке Ассемблера. Язык Си для программирования микроконтроллеров. С51 и его особенности. Типы данных. Переменные и области их размещения. Операции с переменными и регистрами. Функции и подпрограммы в С-51.

Рекомендуемая литература: [1], гл. 4, 5, [4].

Контрольные вопросы:

- 1. Какой язык «понимает» микроконтроллер?
- 2. Какая программа будет короче: на ассемблере, на Си, на Питоне?
- 3. Приоритеты команд языка Си.
- 4. Отличие компилятора и интерпретатора.

Tema 7. Среда программирования микроконтроллеров Keil uVision

Перечень изучаемых вопросов:

Назначение инструментальной среды программирования. Установка и конфигурирование Keil uVision и загрузчика FlashMagic. Средства симуляции внешних устройств и портов микроконтроллеров. Загрузка и отладка программ

Рекомендуемая литература: [3], гл. 1-3, [4], [12].

Контрольные вопросы:

- 1. На каких языках можно писать программы в Keil uVision?
- 2. Как симулируется работа АЦП?
- 3. Какие способы отладки программ в Keil uVision?

4 Методические указания по проведению лабораторных занятий

Особое место в структуре дисциплины занимает практикум, включающий в себя 8 лабораторных работ. Символом (*) отмечены работы модуля, выполняемые по курсу «РПОСАУТП», Символом (**) отмечены работы, выполняемые по курсу «Практикум по РПОСАУТП»

Таблица 5 - Объем (трудоёмкость освоения) и структура ЛЗ

Номер		Кол-во часов ЛЗ		
_	Наименование лабораторной работы	очная	заоч.	
темы		форма	форма	
2	Ознакомление с устройством и работо учебного микропроцессорного комплекта УМК		-	
3	Изучение системы команд I8080 и выполнени простейших программ.	4**	2*	
4	Организация ввода-вывода информации микропроцессора через внешние устройства.	6*	2*	
5	Порты ввода-вывода микроконтроллер LPC2148	6*	2*	
6	Управление шаговым двигателем	6**	2**	
7	Разработка программы управления ABO газа в среде Keil µVision.	6**	4**	
	ИТОГО	16*+16**=32	6*+6**=12	

Лабораторный практикум проводится в компьютерном классе кафедры цифровых систем и автоматики, оснащенном персональными компьютерами с программным обеспечением (пакетом Keil uVision4, демонстрационная версия распространяется свободно на сайте разработчика 121 и в лаборатории 234, оснащенной лабораторными стендами Embeddet Artists 3, построенными на базе микроконтроллера Lpc2149. Студент в ходе лабораторного практикума согласно методическим указаниям и заданию преподавателя выполняет разработку и отладку программ управления. Защита лабораторной работы проводится на основании выполненного на компьютерном имитаторе проекта, при условии работы программы на лабораторном стенде, а также ответа на контрольные вопросы.

Более подробные указания по выполнению лабораторного практикума, включая задание, методические указания по выполнению работы, контрольные вопросы приведены в учебно-методическом пособии [8]. Кроме того, могут быть использованы материалы сайта https://www.keil.com [12].

5 Методические указания по выполнению практических занятий

Модуль предусматривает проведение практических занятий только по курсу «Практикум по РПОСАУТП». Содержание практических занятий и количество их часов определены в нижерасположенной таблице для очной и заочной форм обучения.

Таблица 6 - Объем (трудоёмкость освоения) и структура ПЗ

Номер темы	Т	Кол-во	часов ПЗ
дисциплины	Тема и содержание ПЗ	Очная форма	Заочная форма
1	1.Кодирование информации. Двоичные и шестнадцатеричные числа. Двоичная арифметика. Кодирование чисел, букв и символов. Основные сведения из алгебры логики	4	-
2	2. Функциональная схема восьмиразрядного микропроцессора на примере I8080. Назначение выводов и внутренних регистров. Мультиплексная шина адреса - данных на примере I 8085	4	-
3	3. Система команд I 8080. Виды адресации. Группы команд: пересылок, математических операций, передачи управления, вводавывода, управления процессором. Основные сведения об языке ассемблера I 8080. Листинг программирования. Особенности команд других типов МП	4	1
4	4. Схемотехника статических и динамических оперативных запоминающих устройств. Ячейки и модули памяти. Мультиплексные (адрес, данные, управление) выводы модулей памяти. Дешифраторы адресов и схемы подключения памяти к магистралям	4	-
5	5. Порты ввода-вывода. Программируемый параллельный интерфейс I 8055. Программируемый последовательный интерфейс I 8051. Прямой доступ в память, контроллер 18057. Подключение внешних устройств к магистралям МП, дешифраторы адреса внешних устройств	4	1
6	6. Язык Си для программирования микроконтроллеров. С51 и его особенности. Типы данных. Переменные и области их размещения. Операции с переменными и регистрами. Функции и подпрограммы в С-51	đ	1
7	7. Установка и конфигурирование Keil uVision и загрузчика FlashMagic. Средства симуляции внешних устройств и портов микроконтроллеров. Загрузка и отладка программ	4	1
	ИТОГО	0 3	4

6 Методические указания по выполнению самостоятельной работы

Самостоятельная работа студентов по дисциплине, а также работа в ЭИОС университета может проводиться в том числе в компьютерном классе (лаб. 143а, главный учебный корпус), оснащенном персональными компьютерами с выходом в сеть Интернет.

Таблица 5 - Объем (трудоёмкость освоения) и формы СРС

		Кол-во	Форма	
№ п/п	Вид (содержание) СРС	очная форма	заочная	контроля,
			форма	аттестации
				Текущий
	Оаразина			контроль:
	Освоение теоретического учебного материала (в том			• контроль на
1	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	70,85	137,5	лекциях;
	числе подготовка к лабораторным занятиям)			• защита
				лабораторных
				работ
	Контрольная работа	-		Проверка
2			12	контрольной
				работы
				Текущий
				контроль:
3	Курсовая работа	26	26	-защита
				курсовой
				работы
	Итого	96.85	175,5	

В качестве задания для контрольной работы студентов заочной формы обучения выбираются (по указанию преподавателя) два вопроса из перечня контрольных вопросов по дисциплине (п. 8.2).

7 Методические указания по проведению занятий и освоению дисциплины

При разработке образовательной технологии организации учебного процесса по изучению дисциплины основной упор сделан на соединение активной и интерактивной форм обучения. Интерактивная форма позволяет студентам проявить самостоятельность в освоении теоретического материала и овладении практическими навыками, формирует интерес и позитивную мотивацию к учебе.

В ходе изучения дисциплины внимание студентов постоянно акцентируется не только на теоретическом аспекте проектирования объектов и систем автоматизации технологических процессов и производств, но и их практическом применении в современных высокотехнологичных производствах. Для успешного освоения дисциплины необходимо

ознакомиться с базовыми понятиями об объектах и системах автоматизации технологических процессов и производств.

В ходе лекционных занятий студенту следует вести конспектирование учебного материала. На лекциях изложению нового материала предшествуют обсуждение предыдущей темы с целью восстановления и закрепления студентами изученного теоретического материала и ответы на вопросы студентов. При проведении занятий в интерактивной форме важно участвовать в процессе обсуждения и решения поставленных задач проектирования различных уровней автоматизации, задавать преподавателю вопросы с целью уяснения теоретических положений, области их применения, разрешения спорных ситуаций. В конце лекции выделяется время для ответов на вопросы по текущему материалу и его обсуждению. Для закрепления изученного материала, определения «пробелов» в знаниях студентов на лекциях проводится контроль (устный опрос). Активность студентов и проявленные знания при обсуждении материала и устном опросе учитываются при текущей и промежуточной (заключительной) аттестации по дисциплине.

Самостоятельная работа студентов призвана закрепить теоретические знания и практические навыки, полученные студентами на лекциях, в ходе лабораторных занятий и проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
 - углубления и расширения теоретических знаний;
 - формирования умений использовать специальную литературу.

8 Требования к аттестации по дисциплине

8.1 Текущая аттестация

Текущая аттестация (текущий контроль) проводится с целью оценки освоения теоретического учебного материала, в том числе в рамках самостоятельной работы студента (п. 6).

Контроль на лекциях по отдельным темам используются для оценки освоения первой и второй тем дисциплины. Контроль производится в виде устного опроса.

Типовые контрольные вопросы для устного опроса на лекциях по отдельным темам:

Тема 1. Представление информации в микропроцессорах

- 1. Что такое разрядность машинного слова?
- 2. Где хранится информация в микропроцессоре?
- 3. Что такое мнемокод?
- 4. Длина адреса внешнего устройства.

Тема 2. Архитектура и синхронизация микропроцессоров

- 1. Какие устройства как минимум необходимы микропроцессору?
- 2. Что такое мультиплексная шина?
- 3. Какие магистрали есть в микропроцессоре? Их назначение.
- 4. Какой цикл следует после выполнения очередной команды?

Тема 3. Система команд микропроцессора

- 1. Какие виды адресации Вы знаете?
- 2. Меняют ли содержимое регистра признаков команды пересылок?
- 3. Что такое мнемокод?
- 4. Обязательны ли в листинге комментарии?

Тема 4. Память и внешнее устройство микропроцессорных систем

- 1. Что такое СОЗУ?
- 2. Где хранится информация в динамических ОЗУ?
- 3. Чем внешнее устройство отличается от памяти?
- 4. Какое устройство формирует адреса?

Тема 5. Микроконтроллеры в локальных системах управления. 8-, 16- и 32- разрядные микроконтроллеры.

- 1. По какой архитектуре. RISC или CISC строится большинство микроконтроллеров?
- 2. Как осуществляется дискретный ввод-вывод информации в микроконтроллере Lpc2148 ?
 - 3. Для чего нужен Watchdog таймер?

Тема 6. Языки программирования микроконтроллеров. Язык С-51.

- 1. Какой язык «понимает» микроконтроллер?
- 2. Какая программа будет короче: на ассемблере, на Си, на Питоне?
- 3. Приоритеты команд языка Си.
- 4. Отличие компилятора и интерпретатора.

Tema 7. Среда программирования микроконтроллеров Keil uVision.

- 1. На каких языках можно писать программы в Keil uVision?
- 2. Как симулируется работа АЦП?
- 3. Какие способы отладки программ в Keil uVision?

Положительная оценка («зачтено») по результатам каждого контроля (опроса) выставляется в соответствии с универсальной системой оценивания, приведенной в табл. 7. В случае получения оценки «не зачтено» студент должен пройти повторный контроль по данной теме в ходе последующих консультаций.

Текущий контроль в виде защиты лабораторных работ проводится на лабораторном практикуме, целью которого является формирование умений и навыков по созданию проектов в среде CoDeSys для объекта автоматизации. Защита лабораторной работы проводится на основании выполненного графического и программного представления ее результатов на компьютере, а также ответа на контрольные вопросы к лабораторным работам, приведенным в [8]. Студент, самостоятельно выполнивший задание, продемонстрировавший знание использованных им программных средств, получает по лабораторной работе оценку «зачтено».

С целью контроля качества самостоятельной работы студентов запланированы выполнение и защита курсовой работы. Система оценивания и критерии оценки курсовой работы приведены в табл. 6.

Таблица 6 Система оценивания критерии оценки курсовой работы

Критерий		Система оценок						
	2	3	4	5				
	«неудовлетвори- тельно»	«удовлетвори- тельно»	«хорошо»	«отлично»				
	«не зачтено»		«зачтено»					
1 Работа с информацией	Не в состоянии находить необходимую информацию, либо в состоянии находить отдельные фрагменты информации в рамках поставленной задачи	Может найти необходимую информацию в рамках поставленной задачи	Может найти, интерпретировать и систематизировать необходимую информацию в рамках поставленной задачи	Может найти, систематизир овать необходимую информацию, а также выявить новые, дополнительные источники информации в рамках				
				поставленной				
2	Не может	В	В	задачи В				
Научное	делать научно	состоянии	состоянии	состоянии				
осмысление	корректных	осуществлять	осуществлять	осуществлять				
изучаемого	выводов из	научно	систематический и	систематичес				
явления,	имеющихся у него	корректный	научно корректный	кий и научно-				
процесса,	сведений, в	анализ	анализ	корректный				
объекта	состоянии	предоставленной	предоставленной	анализ				
	проанализировать	информации	информации,	предоставлен				

Критерий	Система оценок						
	2	3	4	5			
	«неудовлетвори- тельно»	«удовлетвори- тельно»	«хорошо»	«отлично»			
	«не зачтено»		«зачтено»				
	только некоторые		вовлекает в	ной			
	из имеющихся у		исследование новые	информации,			
	него сведений		релевантные задаче	вовлекает в			
			данные	исследование			
				новые			
				релевантные			
				поставленной			
				задаче			
				данные,			
				предлагает			
				новые			
				ракурсы			
				поставленной			
				задачи			
3	В	В	В	Не			
Освоение	состоянии решать	состоянии	состоянии решать	только			
стандартных	только фрагменты	решать	поставленные	владеет			
алгоритмов	поставленной	поставленные	задачи в	алгоритмом и			
решения	задачи в	задачи в	соответствии с	понимает его			
профессио-	соответствии с	соответствии с	заданным	основы, но и			
нальных задач	заданным	заданным	алгоритмом,	предлагает			
	алгоритмом, не	алгоритмом	понимает основы	новые			
	освоил		предложенного	решения в			
	предложенный		алгоритма	рамках			
	алгоритм,			поставленной			
	допускает ошибки			задачи			

8.2 Промежуточная аттестация по дисциплине

Промежуточная (заключительная) аттестация по дисциплине проводится в форме зачета, защиты курсовой работы, экзамена. Оценка «зачтено» выставляется по итогам лабораторных работ студентам:

- выполнившим и защитившим все лабораторные работы, предусмотренные данным положением (получившим положительную оценку по результатам лабораторного практикума);
 - имеющим положительную оценку («зачтено») по результатам устного опроса;
 - регулярно посещавшим лабораторные занятия;

К сдаче экзамена допускаются студенты:

- защитившие все лабораторные работы;
- выполнившие все практические задания;
- выполнившие и защитившие курсовую работу;

- выполнившим контрольную работу (получившим оценку «зачтено» по контрольной работе) – для студентов заочной формы.

В случае отсутствия на более чем 30% лекционных занятий для получения оценки «зачтено» студент должен ответить на один из контрольных вопросов по дисциплине или успешно пройти тестирование (табл. 7).

Таблица 7 – Система оценок и критерии выставления оценки при прохождении

тестирования или ответа на контрольные вопросы

Критерий	Система оценок			
	Процент правильных ответов			
	0-40%	41-60%	61-80	81-100
			%	%
	«не	«зачтено»		
	зачтено»			
1	Обладает	Обладает	Обладает	Обладает
Системность и	частичными и	минимальным	набором знаний,	полнотой
полнота знаний	разрозненными	набором знаний,	достаточным для	знаний и
в отношении	знаниями, которые	необходимым для	системного	системным
изучаемых	не может научно-	системного	взгляда на	взглядом на
объектов	корректно	взгляда на	изучаемый	изучаемый
	связывать между	изучаемый объект	объект	объект
	собой (только			
	некоторые из			
	которых может			
	связывать между			
	собой)			
2	В состоянии решать	В состоянии	В состоянии	Не только
Освоение	только фрагменты	решать	решать	владеет
стандартных	поставленной	поставленные	поставленные	алгоритмом и
алгоритмов	задачи в	задачи в	задачи в	понимает его
решения	соответствии с	соответствии с	соответствии с	основы, но и
профессио-	заданным	заданным	заданным	предлагает
нальных задач	алгоритмом, не	алгоритмом	алгоритмом,	новые решения
	освоил		понимает	в рамках
	предложенный		основы	поставленной
	алгоритм,		предложенного	задачи
	допускает ошибки		алгоритма	

Примерный перечень контрольных вопросов:

- 1. Кодирование информации. Двоичные и шестнадцатеричные числа. Двоичная арифметика. Кодирование чисел, букв и символов. Основные сведения из алгебры логики.
- 2. Функциональная схема управляющего микропроцессорного контроллера.
- 3. Обобщенная схема микропроцессора, особенности архитектуры основных типов МП.
 - 4. Организация магистралей МП.

- 5. Виды машинных циклов. Машинный цикл выборки команды. Схема и диаграмма.
- 6. Группы команд: пересылок, математических операций, передачи управления, ввода-вывода, управления процессором.
- 7. Основные сведения об языке ассемблера I 8080. Листинг программирования.
 - 8. Особенности систем команд различных типов МП.
 - 9. Основы электрического расчета элементов МПСУ.
- 10. Принципы работы по прерываниям. Команды, используемые в системе прерываний. Входы запросов прерываний.
- 11. Подключение внешних устройств к магистралям МП, дешифраторы адреса внешних устройств.
 - 12. Способы связи МП с внешней средой. Порты ввода-вывода.
- 13. Схемотехника статических и динамических оперативных запоминающих устройств.
- 14. Ячейки и модули памяти. Мультиплексные (адрес, данные, управление) выводы модулей памяти.
 - 15. Дешифраторы адресов и схемы подключения памяти к магистралям.
 - 16. Синтаксис языка Си. Типы данных.
- 17. Запись констант в языке Си. Основные операции. Запись выражений.
- 18. Структура программы на языке Си. Описание переменных и именованных констант.
 - 19. Простые операторы языка Си. Примеры.
- 20. Условный оператор и оператор переключатель в языке Си. Примеры.
 - 21. Операторы цикла в языке Си. Примеры.
 - 22. Классы памяти в языке Си.
 - 23. Указатели в языке Си. Операции с указателями.
- 24. Одномерные и многомерные массивы в языке Си. Описание, инициализация, операции с массивами.
- 25. Назначение инструментального комплекса Keil uVision при программировании микроконтроллеров.
 - 26. Средства диагностики и отладки программ в микроконтроллерах.

9 Заключение

Освоение дисциплины «Разработка программного обеспечения систем автоматизации и управления технологическими процессами» является одним из основополагающих шагов к формированию будущего специалиста в области автоматизации технологических процессов и производств. Приобретенные в ходе изучения дисциплины знания, умения и навыки будут углубляться и совершенствоваться в процессе дальнейшего обучения и могут быть применены в профессиональной деятельности.

10 Библиографический список Основная литература

- 1. Водовозов, А. М. Микроконтроллеры для систем автоматики : учебное пособие / А. М. Водовозов. Изд. 3-е, доп. и перераб. Москва; Вологда: Инфра-Инженерия, 2016. 164 с. : ил., табл., схем. Библиогр. в кн. ISBN 978-5-9729-0138-8 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=444183.
- 2. Молочков, В. Я. Микропроцессорные системы управления техническими средствами рыбопромысловых судов [Текст]: учеб. пособие / В. Я. Молочков; рец. В. Ф. Веревкин [и др.]. Москва: МОРКНИГА, 2013. 362 с.
- 3. Куприянов, М. С. Информационные системы: аппаратные средства на основе ядра ARM7. Инженерный практикум / М. С. Куприянов, И. С. Зуев, Д. А. Варакин. Санкт-Петербург: Изд-во СПбГЭТУ "ЛЭТИ", 2010. 204 с.
- 4. Солдатенко, И. С. Основы программирования на языке Си: учеб. пособие / И. С. Солдатенко. Тверь: Твер. гос. ун-т, 2017. 159 с.

Дополнительная литература

5. Глинкин, Е.И. Схемотехника микропроцессорных средств: монография / Е.И. Глинкин, М.Е. Глинкин ; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет». - Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2013. - 149 с. : ил. - Библиогр. в кн. ; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=277687.

Учебно-методические пособия:

- 6. Шамаев, Е. П. Разработка программного обеспечения систем автоматизации и управления технологическими процессами: учеб.-метод. пособие по курсовой работе / Е. П. Шамаев– Калининград: Издательство ФБГОУ ВО «КГТУ», 2019 г. 45 с.
- 7. Шамаев, Е. П. Микропроцессорное управление технологическими процессами: учеб. пособие по вып. лаб. практикума на базе учеб. -лаб. комплекса PLC Hitachi EH-150 для

студ. вузов спец. 220301.65 - Автоматизация технолог. процессов и пр-в / Е. П. Шамаев. - Калининград: Φ ГОУ ВПО "КГТУ", 2010. - 66 с.

8. Шамаев, Е.П. Основные функциональные модули микроконтроллера на основе ядра APM7: практикум по дисц. "Микропроцессор. упр. технолог. процессами" для студ. вузов, обуч. по спец. 220301.65 - Автоматизация технолог. процессов и пр-в / Е. П. Шамаев. - Калининград: ФГБОУ ВПО "КГТУ", 2013. - 83 с.

Интернет-ресурсы:

Ссылки на журналы в области проектирования объектов и систем автоматизации:

- 9. Современные технологии автоматизации http://www.cta.ru/
- 10. Портал «Мир компьютерной автоматизации» http://www.mka.ru/
- 11. Атоматизация в промышленности http://www.avtprom.ru/
 - 12.Сайт разработчика https://www.keil.com.

Локальный электронный методический материал

Евгений Петрович Шамаев

Разработка программного обеспечения систем автоматизации и управления технологическими процессами и Практикум по разработке программного обеспечения систем автоматизации и управления технологическими процессами

Редактор Г. А. Смирнова

Уч.-изд. л. 1,1. Печ. л. 1,5

Издательство федерального государственного бюджетного образовательного учреждения высшего образования «Калининградский государственный технический университет». 236022, Калининград, Советский проспект, 1