Федеральное государственное бюджетное образовательное учреждение высшего образования

«Калининградский государственный технический университет»

С. В. Агафонова

ОСНОВЫ БИОТЕХНОЛОГИИ

Учебно-методическое пособие по выполнению курсовой работы для студентов бакалавриата, обучающихся по направлению подготовки 19.03.01 – Биотехнология (профиль – Пищевая биотехнология)

Калининград Издательство ФГБОУ ВО «КГТУ» 2018

Рецензент

д. т. н., профессор, заведующая кафедрой пищевой биотехнологии ФГБОУ ВО «Калининградский государственный технический университет» О. Я. Мезенова

Агафонова, С. В.

Основы биотехнологии: учебно-методическое пособие по выполнению курсовой работы для студентов бакалавриата, обучающихся по направлению подготовки 19.03.01 — Биотехнология (профиль — Пищевая биотехнология) / С. В. Агафонова. — Калининград: Издательство ФГБОУ ВО «КГТУ», 2018. — 21 с.

В настоящих учебно-методических указаниях представлены структура, содержание и требования к оформлению курсовой работы по дисциплине «Основы биотехнологии». Предназначены для студентов бакалавриата, обучающихся по направлению 19.03.01 – Биотехнология (профиль – пищевая биотехнология).

Учебно-методические указание рассмотрены и одобрены на заседании кафедры ПБТ 20 марта 2018 года, протокол № 7.

Учебно-методические указания рассмотрены учебно-методической комиссией механико-технологического факультета 28 марта 2018 г., протокол N_{2} 5.

[©] Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2018 г.

[©] Агафонова С. В., 2018 г.

ОГЛАВЛЕНИЕ

1 ЦЕЛЬ И ОРГАНИЗАЦИЯ КУРСОВОЙ РАБОТЫ	4
2 СТРУКТУРА КУРСОВОЙ РАБОТЫ	5
3 ОФОРМЛЕНИЕ КУРСОВОЙ РАБОТЫ	10
4 РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	12
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15
ПРИЛОЖЕНИЯ	16

1 ЦЕЛЬ И ОРГАНИЗАЦИЯ КУРСОВОЙ РАБОТЫ

Основная цель курсовой работы — углубить и расширить теоретические знания студентов, полученные при изучении дисциплины «Основы биотехнологии», касающиеся получения, очистки и стандартизации биотехнологических продуктов, режимов реализации биотехнологических процессов и их аппаратурного оформления.

Выполнение курсовой работы состоит из следующих этапов:

- 1) выбор темы;
- 2) подбор и изучение литературных источников;
- 3) систематизация и обобщение информации, оформление курсовой работы;
- 4) представление курсовой работы преподавателю;
- 5) устранение указанных недостатков;
- 6) защита курсовой работы.

Тема курсовой работы выбирается студентом самостоятельно из рекомендованного перечня (приложение A), допускается выбор любой другой темы по согласованию с преподавателем.

При подборе литературы изучают источники, указанные в списке рекомендуемой литературы. Рекомендуются материалы научно-технической библиотеки КГТУ, Калининградской областной научной библиотеки, материалы, размещенные в сети Интернет.

Написание курсовой работы – творческим процессом, однако обязательным является освещение следующих вопросов:

- характеристика штамма микроорганизма, использующегося для получения целевого продукта, состава питательной среды для его культивирования;
- технологическая схема процесса получения биотехнологического продукта и ее описание;
- описание аппаратурного оформления биотехнологического процесса;
- характеристика готового продукта.

Готовая курсовая работа в электронном или печатном виде представляется на проверку преподавателю. Если в результате проверки обнаружены ошибки, неправильное оформление или неполное освещение темы в работе, она возвращается студенту для доработки.

Защита курсовой работы проходит в форме публичного доклада. Автору предоставляется 5-10 мин для освещения основных положений курсовой работы. Доклад сопровождается показом презентации.

2 СТРУКТУРА КУРСОВОЙ РАБОТЫ

Курсовая работа состоит из следующих разделов:

- Титульный лист
- Содержание
- Введение
- Основная часть
- Заключение
- Список использованных источников
- Приложения

Титульный лист является первой страницей работы. На титульном листе указываются: название учебного заведения и его ведомственная принадлежность, факультет, кафедра, тема работы, фамилия, имя, отчество автора, номер группы, фамилия, инициалы, ученая степень и ученое звание руководителя курсовой работы, место и год выполнения работы. Образец титульного листа представлен в приложении Б.

Содержание следует за титульным листом и включает все заголовки в работе и номера страниц, с которых они начинаются. Содержание должно быть сформировано автоматически.

Во введении отражается общая формулировка выбранной темы, ее актуальность, обозначается цель курсовой работы и конкретные задачи, которые автор поставил перед собой. Объем введения не должен превышать трех страниц.

Основная часть курсовой работы излагается последовательно и состоит из разделов, которые могут делиться на подразделы, пункты и подпункты. Ниже приведено содержание обязательных разделов основной части.

Описание и свойства рассматриваемого продукта (вещества). Дается характеристика рассматриваемого в курсовой работе биотехнологического продукта (вещества), приводится его структурная формула, история открытия, содержание в природных источниках, биологическая роль в организме человека.

Получение биотехнологического продукта. Приводится краткое описание различных способов получения рассматриваемого в курсовой работе биотехнологического продукта (химический, экстракционный, биотехнологический). Обосновывается целесообразность получения продукта биотехнологическим путем при культивировании определенного штамма микроорганизмов.

Характеристика штамма микроорганизма-продуцента и питательной среды для культивирования. Приводится характеристика штамма микроорганизма-продуцента, а также состав питательной среды для его культивирования.

Пример. Для промышленного получения молочной кислоты используют штамм Lactobacillus delbrueckii subsp. bulgaricus, род Lactobacillus. Это неподвижные, неспорообразующие бактерии размером 0,5-0,8 × 2,0-9,0 мкм. Являются хемоорганогетеротрофами, микроаэрофилами. Энергию получают в результате гомоферментативного молочнокислого брожения. Для роста на питательных средах нуждаются в факторах роста и витаминах. Для культивирования Lactobacillus delbrueckii subsp. bulgaricus стандартной является питательная среда MRS (De Man-Rogosa-Sharpe) [4]. Состав питательной среды представлен в таблице 1.

Таблица 1 – Состав питательной среды MRS для культивирования *Lactobacillus delbrueckii* subsp. *bulgaricus* [4]

Компонент	Количество, г / 1000 мл
Компонент	дистиллированной воды
Дрожжевой экстракт	4,0
Мясной экстракт	10,0
Гидролизат казеина	10,0
Глюкоза	20,0
Цитрат аммония двузамещенный	2,0
Ацетат натрия	5,0
Твин 80	1,0
K ₂ HPO ₄	2,0
MgSO ₄ •7H ₂ O	0,2
MnSO ₄ •4H ₂ O	0,05

Структурная схема производства биотехнологического продукта и ее описание. Технологическую схему оформляют в виде прямоугольников (векторов), на которых последовательно нанесены технологические операции процесса производства продукта (пример технологической схемы производства молочной кислоты представлен на рисунке).

Дается описание технологической схемы (каждой операции) с указанием параметров технологического процесса (температура, время, давление, рН). Обязательным является указание типов и представление краткой характеристики машин и аппаратов, с помощью которых осуществляется каждая технологическая операция.

Характеристика готового продукта. Приводится органолептическая характеристика биотехнологического продукта, физико-химические показатели качества, показатели безопасности (токсичные элементы, радионуклиды, микробиологические показатели) в соответствии с действующей технической документацией.

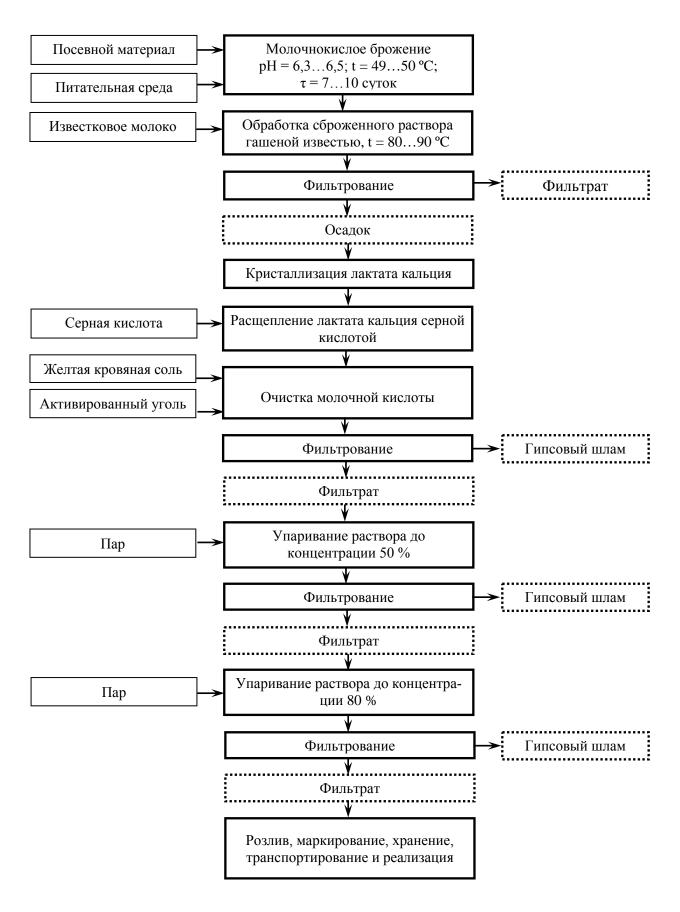


Рисунок – Технологическая схема производства молочной кислоты [2]

Пример. По органолептическим и физико-химическим показателям качества молочная кислота должна соответствовать требованиям ГОСТ 490-2006 «Добавки пищевые. Кислота молочная Е270. Технические условия» (таблицы 2, 3).

Таблица 2 – Органолептические показатели качества молочной кислоты [1]

Наименование показателя	Характеристика
Внешний вид	Прозрачная сиропообразная жидкость
Цвет	Не интенсивнее светло-желтого
Вкус	Кислый
Запах	Без запаха или слабый характерный

Таблица 3 – Физико-химические показатели качества молочной кислоты [1]

Наименование показателя	Характеристика
Тесты на пищевую молочную кислоту	Выдерживает испытание
Массовая доля пищевой молочной кислоты, %	От 76,0 до 84,0 включительно
Массовая доля золы, %, не более	0,3
Массовая доля железа, % или мг/кг, не более	0,001 или 10,0
Массовая доля сульфатов, %, не более	0,25
Массовая доля хлоридов, %, не более	0,2
Проба на редуцирующие вещества	Выдерживает испытание
Проба на легкообугливаемые вещества	Выдерживает испытание
Проба на лимонную, щавелевую, фосфорную и винную кислоты	Выдерживает испытание
Проба на цианиды	Выдерживает испытание

Требования безопасности и критерии чистоты молочной кислоты регламентируются ТР ТС 029/2012 «Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств» (таблица 4).

Таблица 4 – Нормы содержания токсичных элементов в пищевой добавке «кислота молочная» [3]

Токсичный элемент	Норма, мг/кг, не более
Мышьяк	3*
Свинец	5*
Ртуть	1*
Кадмий	-

^{*} относится к 80%-ному водному раствору

В заключении курсовой работы четко формулируются основные выводы, к которым пришел автор. Они должны отражать решение задач, поставленных во введении.

Список использованных источников оформляется по установленному порядку согласно ГОСТ 7.0.5-2008 «Библиографическая ссылка. Общие требования и правила составления». Источники в списке располагаются в алфавитном порядке. Пример оформления списка использованных источников приведен в приложении В. Список должен включать не менее 10 источников.

Приложения не являются обязательным элементом структуры курсовой работы и вводятся в случае наличия объемного материала, который может затруднять чтение работы.

3 ОФОРМЛЕНИЕ КУРСОВОЙ РАБОТЫ

Курсовая работа выполняется машинописным способом на одной стороне листа белой бумаги.

Текст должен быть подготовлен в редакторе Microsoft Word, набран шрифтом Times New Roman, кегль — 14, цвет — черный, межстрочный интервал — 1,15. Верхнее и нижнее поля — 2 см, правое — 1,5 см, левое — 3 см. Абзацный отступ — 1,25 см. Выравнивание текста по ширине, автоматический перенос. Объем курсовой работы — не менее 20 с.

Нумерация страниц – сквозная, включая титульный лист. Страницы нумеруются арабскими цифрами внизу, по центру страницы. На титульном листе номер страницы не указывается.

Разделы, подразделы, пункты и подпункты (кроме введения, заключения, списка использованных источников, приложений) нумеруются арабскими цифрами. Например, раздел 2, подраздел 2.1, пункт 2.1.2, подпункт 2.1.2.3. Слова «Раздел» и «Подраздел» не пишутся. Заголовки разделов и подразделов должны четко и кратко отражать содержание. Заголовки раздела, а также слова «Введение», «Заключение», «Список использованных источников», «Приложения» располагаются в середине строки, без точки, печатаются прописными буквами полужирным шрифтом без подчеркивания. Подразделы располагаются с абзацного отступа, печатаются строчными буквами, полужирным шрифтом без подчеркивания. Перенос слов в названиях разделов и подразделов не допускается. Каждый раздел начинается с новой страницы.

Иллюстрации, таблицы, формулы, уравнения химических реакций в работе следует располагать непосредственно после их первого упоминания в тексте, или на следующей странице, если в указанном месте они не помещаются. При упоминании в тексте таблицы, рисунка, формулы в тексте дается ссылка, например, (таблица 1.1). Иллюстрации, таблицы и формулы должны быть отделены от основного текста пробелами сверху и снизу.

Таблицы должны иметь номер и название, сокращения в заголовках таблиц не допускаются. При оформлении таблицы пишется слово «Таблица» и проставляется ее порядковый номер арабскими цифрами с левой стороны листа перед названием. Далее через тире дается название. Допускается сквозная нумерация таблиц или по разделам. Если таблица не помещается на одной стра-

нице, ее можно давать на следующей странице, где пишется «Продолжение таблицы», а на последней странице – «Окончание таблицы». Название таблицы на новой странице не повторяется. Пример оформления таблиц – таблицы 1-4.

Иллюстрации располагаются по центру. Снизу, также по центру, пишется слово «Рисунок», проставляется его порядковый номер и дается название через тире. Пример оформления иллюстрации – рисунок.

Формулы и уравнения химических реакций нумеруются арабскими цифрами в круглых скобках напротив формулы справа. Пример оформления формулы:

$$\mu = \mu_m \cdot \frac{K_S}{K_S + S} \quad , \tag{1}$$

где K_s — константа насыщения, численно равная концентрации субстрата, при которой удельная скорость роста достигает половины максимальной; S — концентрация субстрата;

 μ_m – максимальная удельная скорость роста.

Если в работе только одна формула (уравнение химической реакции), ее не нумеруют.

Ссылки на библиографические источники приводятся в тексте в квадратных скобках в соответствии со «Списком использованных источников» – [1].

Приложения оформляются как продолжение работы со сквозной нумерацией страниц. Каждое приложение должно начинаться с новой страницы. Для обозначения приложения используют заглавные буквы русского алфавита. Например, «Приложение А».

4 РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1) Биотехнология: учеб. пособие для студентов высш. учеб. заведений / под ред. А. В. Катлинского. – Москва: Академия, 2008. – 256 с.

- 2) Биотехнология: теория и практика: учеб. пособие для вузов / Н. В. Загоскина [и др]. Москва: Оникс, 2009. 496 с.
- 3) Биотехнология биологически активных веществ: учеб. пособие для студентов вузов / под ред. И. М. Грачевой, Л. А. Ивановой. Москва: Элевар, 2006. 453 с.
- 4) Бирюков, В. В. основы промышленной биотехнологии / В. В. Бирюков. Москва: КолосС, 2004. 296 с.
- 5) Волова, Т. Г. Введение в биотехнологию. Версия 1.0 [Электронный ресурс]: электрон. учеб. пособие / Т. Г. Волова. Электрон. дан. (2 Мб). Красноярск: ИПК СФУ, 2008. 1 электрон. опт. диск (DVD). Систем. требования: Intel Pentium (или аналогичный процессор других производителей) 1 ГГц; 512 Мб оперативной памяти; 2 Мб свободного дискового пространства; при- вод DVD; операционная система Microsoft Windows 2000 SP 4 / XP SP 2 / Vista (32 бит); Adobe Reader 7.0 (или аналогичный продукт для чтения файлов формата pdf).
- 6) Голубев, В. Н. Пищевая биотехнология / В. Н. Голубев, И. Н. Жиганов. Москва: ДеЛи принт, 2001.-123 с.
- 7) Гореликова, Г. А. Основы современной пищевой биотехнологии: учеб. пособие / Г. А. Гореликова. Кемерово: Изд-во КемТИПП, 2004. 100 с.
- 8) Егорова, Т. А. Основы биотехнологии: учеб. пособие для высш. пед. учеб. заведений / Т. А. Егорова, С. М. Клунова, Е. А. Живухина. Москва: Академия, 2003. 208 с.
- 9) Елинов, Н. П. Основы биотехнологии / Н. П. Елинов. Санкт-Петербург: Наука, 1995.-600 с.
- 10) Краснопольский, Ю. М. Биотехнология иммунобиологических препаратов / Ю. М. Краснопольский, М. М. Борщевская. Харьков: Фармитек, 2008. 312 с.
- 11) Муратова, Е. И. Биотехнология органических кислот и белковых препаратов: учеб. пособие / Е. И. Муратова, О. В. Зюзина, О. Б. Шуняева. Тамбов: Изд-во ТГТУ, 2007. 80 с.

- 12) Основы промышленной иммунобиотехнологии: учеб. пособие / В. М. Безгин [и др]. Курск: Изд-во КГСХА, 2011. 512 с.
- 13) Основы промышленной микробиологии / О. И. Гулий [и др]. Саратов: Наука, 2015. 119 с.
- 14) Основы фармацевтической биотехнологии / Т. П. Прищеп [и др]. Ростов-на-Дону: Феникс, 2006. 256 с.
- 15) Современные проблемы и методы биотехнологии [Электронный ресурс]: электрон. учеб. пособие / Н. А. Войнов [и др]; под науч. ред. Т. Г. Воловой. Электрон. дан. (12 Мб). Красноярск: ИПК СФУ, 2009. 1 электрон. опт. диск (DVD). Систем. требования: Intel Pentium (или аналогичный процессор других производителей) 1 ГГц; 512 Мб оперативной памяти; 50 Мб свободного дискового пространства; привод DVD; операционная система Microsoft Windows XP SP 2 / Vista (32 бит); Adobe Reader 7.0 (или аналогичный продукт для чтения файлов формата pdf).
- 16) Шлейкин, А. Г. Введение в биотехнологию: учеб. пособие / А. Г. Шлейкин, Н. Т. Жилинская. Санкт-Петербург: НИУ ИТМО; ИХиБТ, 2013. 95 с.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) ГОСТ 490-2006 Добавки пищевые. Кислота молочная Е270. Технические условия (с Изменением № 1, Поправками). Москва, 2007. 28 с.
- 2) Муратова, Е. И. Биотехнология органических кислот и белковых препаратов: учеб. пособие / Е. И. Муратова, О. В. Зюзина, О. Б. Шуняева. Тамбов: Изд-во ТГТУ, 2007. 80 с.
- 3) Технический регламент Таможенного союза "Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств" (ТР ТС 029 2012) [Электронный ресурс] // Федеральное агентство по техническому регулированию и метрологии [Офиц. сайт]. Режим доступа: http://webportalsrv.gost.ru/portal/GostNews.nsf/acaf7051ec840948c22571290059c78 f/9fe752e7e38cc18e44257bde0024e7d4/\$FILE/TR_TS_029-2012_text.pdf (дата обращения: 25.01.2018).
- 4) Яруллина, Д. Р. Бактерии рода Lactobacillus: общая характеристика и методы работы с ними: учеб.-метод. пособие / Д. Р. Яруллина, Р. Ф. Фахруллин. Казань: КФУ, 2014. 51 с.

приложения

Приложение А

Примерные темы курсовых работ

1)	Биотехнологическии спосоо получения фермента амилосуотилина
2)	Биотехнологический способ получения фермента β-галактозидазы
3)	Биотехнологический способ получения фермента амилазы
4)	Биотехнологический способ получения фермента пектиназы
5)	Биотехнологический способ получения фермента липазы
6)	Биотехнологический способ получения витамина В2 (рибофлавина)
7)	Биотехнологический способ получения витамина B_{12} (цианокобаламина)
8)	Биотехнологический способ получения витамина D_2 (эргокальциферола)
9)	Биотехнологический способ получения β-каротина
10)	Биотехнологический способ получения интерферона
11)	Биотехнологический способ получения инсулина
12)	Биотехнологический способ получения соматотропина
13)	Биотехнологический способ получения интерлейкинов
14)	Биотехнологический способ получения моноклональных антител
15)	Биотехнологический способ получения терпенов
16)	Биотехнологический способ получения аспартама
17)	Биотехнологический способ получения биоэтанола
18)	Биотехнологический способ получения соевого соуса и соевых продуктов
19)	Биотехнологический способ получения кормового белка

Приложение Б

Пример оформления титульного листа

Федеральное агентство по рыболовству

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Калининградский государственный технический университет»

Механико-технологический факультет Кафедра пищевой биотехнологии

Курсовая работа

по дисциплине

«Основы биотехнологии»

БИОТЕХНОЛОГИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ МОЛОЧНОЙ КИСЛОТЫ

Выполнил:	
студент(ка) группы 15-ПБ/б	
Иванова Екатерина Ивановна	
(подпись)	
Проверил:	
доцент, канд. техн. наук	
Агафонова С.В.	
(подпись)	

Калининград – 2018

Приложение В

Пример оформления списка литературы

Книга одного-трех авторов

- 1) Колодязная, В. С. Пищевая химия / В. С. Колодязная. Санкт-Петербург: Изд-во СПбГАХПТ, 1999. – 140 с.
- 2) Голубев, В. Н. Пищевые и биологически активные добавки / В. Н. Голубев, Л. В. Чичева-Филатова, Т. В. Шленская. Москва: Академия, 2003. 208 с.

Книга более трех авторов

Флавоноиды: биохимия, биофизика, медицина / Ю. С. Тараховский [и др]. – Пущино: Synchrobook, 2013. – 310 с.

Книга, не имеющая индивидуальных авторов

- 1) Технология рыбы и рыбных продуктов / под ред. А. М. Ершова. Санкт-Петербург: ГИОРД, 2006. 941 с.
- 2) Химический состав российских пищевых продуктов: справочник / под ред. И. М. Скурихина, В. А. Тутельяна. Москва: ДеЛи принт, 2002. 236 с.

Статья в журнале

- Мезенова, О. Я. Новое в технологии и технике копчения пищевых продуктов / О. Я. Мезенова // Известия Высших учебных заведений. Пищевая технология. 2017. № 2-3. С. 6-10.
- 2) Мельникова, В. А. Исследование возможности замораживания клубней топинамбура (*Heliantus Tuberosus L.*) / В. А. Мельникова, Л. С. Байдалинова // Вестник Международной академии холода. 2017. № 1. С. 13-17.
- 3) Пищевой жир из печени амурских осетровых / М. В. Сытова [и др] // Рыбное хозяйство. -2005. -№ 4. C. 71-74.

Статья в электронном журнале

Казимирова, Е. А. Лень как вид человеческих ресурсов / Е. А. Казимирова, Я. Ю. Ролич, К. В. Кузнецова // Вестник молодежной науки. – 2017. – № 3(10) [Электронный ресурс]. – Режим доступа: http://vestnikmolnauki.ru/wp-content/uploads/2017/10/Kazimirova-310.pdf (дата обращения: 23.01.2018).

Статья, опубликованная в сборниках научных трудов, материалах конференций и семинарах

- 1) Разгуляева, О. И. Микробиологические аспекты безопасности геродиетического кисломолочного напитка «Биомикс» / О. И. Разгуляева, О. Я. Мезенова // VIII Всероссийская научно-практическая конференция, посвященная 75-летию рыбохозяйственного образования на Камчатке «Природные ресурсы, их современное состояние, охрана, промысловое и техническое использование» (12-14 апреля 2017 г.): сборник трудов конференции. Петропавловск-Камчатский: Изд-во КамчатГТУ, 2017. —С. 73-78.
- 2) Исследование антиокислительных свойств сверхкритических CO₂-экстрактов / А. Б. Лисицын [и др.] // 6-я Международная конференция памяти В.М. Горбатова: труды. Москва, 2002. С. 87-89.

Диссертация или автореферат диссертации

- 1) Мезенова, Н. Ю. Разработка технологии биопродукта для спортивного питания с использованием биомодифицированного коллагенсодержащего сырья: дис. ... канд. техн. наук: 05.18.04, 05.18.07 / Мезенова Наталья Юрьевна; КГТУ. Калининград, 2017. 223 С.
- 2) Потапова, В. А. Разработка технологии функциональных рыборастительных снеков с использованием биопотенциала вторичного рыбного сырья и топинамбура (Helianthus tuberosus): автореф. дис. ... канд. техн. наук: 05.18.04, 05.18.07 / Потапова Валерия Александровна; КГТУ. Калининград, 2017. 24 с.

Переводная книга

- а) Себехей, В. Теория орбит: ограниченная задача трех тел / В. Себехей: пер. с англ. / под ред. Г. Н. Дубошина. Москва: Наука, 1982. 656 с. [Victor G. Szebehely. Theory of Orbits: the Restricted Problem of Three Bodies. New York: Academic Press, 1967].
- б) Дейт, К. Дж. Введение в системы баз данных / К. Дж. Дейт: пер. с англ.– Москва: Вильямс, 2006. 1328 с. [Date C. J. An Introduction to Database Systems. 8th ed. AddisonWesley, 2003. 1024 р.].

Электронные источники

- 1) Информационный бюллетень № 320 Всемирной организации здравоохранения «Десять ведущих причин смерти в мире» [Электронный ресурс] // Всемирная организация здравоохранения [Офиц. сайт]. Режим доступа: http://www.who.int/mediacentre/factsheets/fs310/ru/ (дата обращения: 10.09.2015).
- 2) Мараховский, Ю. Х. Желчнокаменная болезнь: современное состояние проблемы [Электронный ресурс] // Российская гастроэнтерологическая ассоциация [Офиц. сайт]. Режим доступа: http://www.gastro.ru/index.php?mod_articles_list_act=show_article&article_id=26& cat id=6 (дата обращения: 15.08.2011).

Стандарты

ГОСТ Р 52349-2005 Продукты пищевые. Продукты пищевые функциональные. Термины и определения. – Москва, 2006. – 10 с. или

Продукты пищевые. Продукты пищевые функциональные. Термины и определения: ГОСТ Р 52349-2005. – М., 2006. – 10 с.

Патентные документы

Пат. № 2078130 Россия, МПК-8 С11С3/10 Способ получения концентрата этиловых эфиров полиненасыщенных высших жирных кислот / Н. В. Серебрянников. – № 9404325/43; Заявл. 07.12.1994; Опубл. 27.04.1997. Рус.

Учебное издание

Светлана Викторовна Агафонова

ОСНОВЫ БИОТЕХНОЛОГИИ

Редактор Е. Билко

Подписано в печать 16.05.2018 г. Формат 60x84 (1/16). Уч.-изд. л. 1,0. Печ. л. 1,3. Тираж 20 экз. Заказ

Издательство федерального государственного бюджетного образовательного учреждения высшего образования «Калининградский государственный технический университет». 236022, Калининград, Советский проспект, 1